A Saga of Spurious Spines

Journal cover

There’s a story we’ve all been told. It goes like this:

A person suffers a traumatic injury, usually a minor one, like bumping their head or crunching their fender in traffic. Afterwards, they appear fine, without deficits or any great pain. Ambulance and hospital personnel are unimpressed. But all of a sudden, our seemingly-well patient makes some slight movement — maybe he turns his head — and instantly collapses to the floor, unable to move. He is paralyzed forever, and it’s all because of the unstable spinal injury that you missed.

You heard this cautionary fable in EMT or paramedic class. They tell it in medical school, in the emergency department, and on the trauma wards. It goes back decades. And it makes sense, right? Even a layperson would agree that if the structure of the spine is damaged, the cord it protects will become vulnerable, just like how you’re not supposed to poke the soft spot on a baby’s head.

In fear of this event, we go to great lengths to prevent it. We wrap collars around our patients’ necks, we tie them onto boards, we strap and tape and secure. If their spine can’t protect the cord, by golly we’ll protect it instead, at least until somebody definitively proves that there’s no injury. Which there usually isn’t. But still.

Here’s the trouble: practically nobody has actually seen this phenomenon of mechanical instability occur. For real; the next time somebody mentions it, ask if it’s happened to them. No, they’ll say; but my partner’s cousin’s babysitter saw it a few years back. And if you bother to track that person down, invariably you find that the case either never occurred or has become terribly dramatized through the telling. Steve Whitehead calls it the “Sasquatch event.”

So does this happen at all? After all, many things in medicine that make sense aren’t real. Indeed, doubt has grown lately as to whether our spinal immobilization precautions are effective, and we’ve become more aware of the harms associated with them; as a result, backboards have become increasingly vilified in recent years, and “selective immobilization” algorithms have been accepted in some areas. But there’s been less attention to the question of whether the disease itself is real or a myth, and I wanted to know.

So we went and looked. With the help of four folks smarter than me — Domenic Corey, NREMT-P; James Oswald, B.Emerg Health (Paramedic); Derek Sifford, FP-C; and Brooks Walsh, MD, NREMT-P — we canvassed the literature as far back as possible to dig up any actual, confirmed, peer-reviewed reports of this event. And we just published our findings in the journal Academic Emergency Medicine. Check it out. (And also check out the accompanying editorial by spine connoisseur Mark Hauswald, who you know from “that Malaysia study.”)

I won’t spoil the results, but let me put it this way:

  1. Despite looking across 50+ years, we found few examples.
  2. Most of them weren’t very impressive.
  3. Even fewer occurred in the EMS setting, and none of those were the classic, sudden event you’ve heard about.

So the next time your buddy mentions this unicorn, tell him you don’t doubt him, but that he should write it up for the journals — because it’ll be the first one, and that’s publishable.

This has been an exciting project for another reason. From start to finish, this paper was the child of two parents: the FOAM and EMS communities. Of my four co-authors, I knew three of them exclusively through the web, and have only met two, yet we share interests and passions enough to collaborate on a project that took us over a year. Moreover, every one of us is either an EMT or paramedic, most of us still working actively in the field (although in a few cases we’ve accumulated some other titles too). In fact, had this reached print a few months sooner, the fanciest initials of the lead author would be EMT-B, and that should tickle you.

So never let it be said that the nonsense in this profession is invincible, or that we can’t be the ones to exorcise it. We can fix our own problems, and if we spent more of our energy on moving forward rather than complaining, it just might happen sooner than you think.

Super Soakers: Building a BLS Irrigation Device

Preparation vs. Improvisation

Everything in its place

I have a new partner who called me obsessive once.

“Eh?” I asked.

“Everything has to be just so. When you come in you make sure the collars are organized and facing the same direction, you fold over the ends of the tape and stack it in a certain order, you make sure the handles on the bags are easy to grab…”

“I’m not obsessive… have you seen my car?”

“Well, you are here.”

And it’s true. When I show up in the morning, I do my damnedest to ensure that all of our equipment is as stocked, ready, and prepared as possible. I’m the guy who checks the integrity of the air-filled gaskets on the BVM masks, and considers two spare O2 tanks one and one none. If my blood pressure cuffs aren’t labeled, I label them, and I ensure my map book is turned to the correct page.

And all of that may sound funny, because everybody knows that one of the hallmarks of EMS is improvisation, the ability to adapt to unusual situations and “make do.” If you’re juking around at a chaotic scene and discover that you haven’t got any splints, or your stretcher strap is broken, or your patient is dangling over the side of a balcony and needs to be boarded, you see what you have and use your noodle and make it work. Not long ago I saw somebody apply pressure to a laceration on top of a patient’s head by tying a bandage to both stretcher rails and rubber-banding it over their skull like a bow-and-arrow. Why not?

We find a way. So why am I so anal about being prepared while we’re still standing on solid ground?

The fact is, in this job, things are going to go wrong. They just are. And you’re going to handle them the best you can. But if too many things go wrong, the situation may reach a breaking point — your capacity to “adapt and overcome” is not infinite.

Have you ever read a book or watched a show about a major disaster? Plane crashes, reactor meltdowns, bridge collapses. What they have in common is that numerous intelligent people usually foresaw the possibility of such an event, and so they designed systems and safeguards to prevent it from happening. When disaster happens nonetheless, it isn’t because one thing went wrong. It’s because five, six, twelve things went wrong. The backups to the backups to the backups failed. More problems occurred simultaneously than anybody expected..

In this job, too, the only time when feces hit fans is when problems accumulate. It’s not that the patient was sicker than you expected. Or that the stairs were rickety and covered in snow. Those are a nuisance. It goes from whoopsie to trainwreck when you didn’t bring your stairchair and your suction. Then when you go back, the chair falls open while you’re walking, and as you try to fold it you trip over your untied laces, and when you finally get inside you realize the suction canister is missing a cap and won’t hold pressure. And then once you get the patient extricated they’re already unconscious, but you can’t find any Yankauer tips in the truck, and by the time you do they’ve stopped breathing…

See? With this job, even at the best of times, the line between well-in-hand and circling-the-drain can be pretty slim, and once you’re on that slope it’s hard to recover. The only way to stay safely in control is to create a buffer, and that means doing everything you can to prepare yourself when you have the chance, because you won’t always have a chance. If you don’t bother dotting your I’s and crossing your T’s before you enter the mix, then when things inevitably go wrong, the sum of those unhingings may be too much to handle.

Consider your emergency responses. It’s a safe bet that you’re going to drive past the address, or turn the wrong way, or get caught behind the world’s slowest schoolbus. Something is going to cause problems, whether it’s your dyslexic partner who confuses Gable Street with Bagel Street, or you forgetting the apartment number three times in a row. But that’s just a small delay. It won’t be a real problem unless you also stopped to pee before leaving the base, or forgot where your boots were, or had to spend five minutes backing out of where you parked. In that case, you already burned through your margin for error, and now when the unexpected (but inevitable) comes along, you’ve got no slack left.

In short, you can be the best in the world at rolling with the punches, and in this job, you ought to be. But that doesn’t mean you shouldn’t also try to be prepared to the point of obsessiveness. One lays a foundation for the other, and when you habitually have both to work with, you can handle whatever comes your way; if you’ve only got one, you’ll be lucky to get through your shift.

Cuff Links and Hijinks

Any decent EMT can take the austere equipment he’s got and use it to craft all manner of weird and wonderful solutions for the challenges of prehospital medicine. Of course, doing this means understanding the tools you’ve got and all of their powers. Here are a few ideas for using the ubiquitous blood pressure cuff or sphygmomanometer. (We’ve mentioned many of these in passing before, but it’s nice to see them in living color.)


Calibrating the gauge

How to use a pair of pliers to zero the needle on a mis-calibrated dial.


Measuring airway pressure, tourniquets, and cushions

Three handy tricks: first, a method of repurposing common items to create a BVM that provides real-time measurement of the pressure created during positive-pressure ventilation (a very handy teaching tool). Second, using the BP cuff as a tourniquet. Third, using it as an air pillow to fill voids during spinal immobilization.


Do you have a trick for the blood pressure cuff we haven’t mentioned? Let’s hear it!

Mastering BLS Ventilation: Algorithms

Continued from Mastering BLS Ventilation: Introduction, then Mastering BLS Ventilation: Hardware, then Mastering BLS Ventilation: Core Techniques, and finally Mastering BLS Ventilation: Supplemental Methods

Over the past few weeks, we’ve explored a large number of BLS tools for maintaining a patent airway and pushing oxygen through it. This is good, because the only reliable way to address this dilemma is by having a large toolbox. Nobody can oxygenate every patient with just one trick, no matter how skilled they are.

But a box of tools isn’t an approach to the airway, no matter how big it is. It’s just a box. You need more than that — you need a plan. If I toss you an apneic person, what are you going to do? What if that fails? What’s plan B? And plan C? Then what happens?

The only way to answer these questions is by creating your own scheme, a roadmap to fall back upon. I can’t give it to you, because I don’t know your variables. I don’t know your specific skillsets, what you’re comfortable with, what you’ve practiced and in what situations, versus what you’ve never done in your life. I don’t know what your local protocols are, and what equipment you have available (including extra toys like supraglottic airways or Narcan/naloxone), your typical transport times, or the general availability of ALS. I don’t know what type of patients you usually encounter, how many personnel you have on hand to manage them, and what sort of extrications are involved.

But you know those things. Roll it all into a ball so you understand your resources and challenges, consider the various tools we’ve discussed, and make a plan.

Click to expand

Click here for a PDF version (recommended if printing)

Here’s an example I concocted. This is a flowchart patterned after the airway algorithms commonly used in the ED or the ICU, and it incorporates most of the ideas we’ve talked about. It assumes certain things, so I’m not putting it forward as something to follow religiously. Rather, it’s meant as an example: this is the type of thinking you need to be doing. You probably won’t take the time to chart it out, but you should at least be thinking about it now, because figuring it out on scene with the sick person is too late. Mentally walk through what you’d do at each juncture, imagining yourself treating a real patient in your real ambulance using your real gear. Think about your responses to each dilemma, and if you discover you’re unsure about any details, seek out additional training or practice to patch those holes; for instance, spending some time with a (high quality) mannequin and a BVM can be beneficial. Even just a few minutes playing with the BVM (try bagging yourself until you really understand how the pressures and airflows work), the non-rebreather, your various airways, and so forth can help develop familiarity with little-used tools, so you truly understand how all the valves function, how to size and adjust everything, even where it can be found in your bags. This is particularly important if you rarely use these tools, because infrequent or not, you still need to exhibit mastery when the time comes.

Questions, comments, or remarks on our proposed model are welcome.

Thanks for sticking with us through this exploration of the art and science of BLS ventilation.