Podcast: EMS to ED Interface

Streamlining a patient’s entry to the healthcare continuum is one of our main roles in EMS, and the key step in most cases is when we transfer care at the emergency department. This isn’t rocket science, but you can do it well or less well, and frankly I think it’s tough to do right unless you can see the whole picture. We never really know in what ways we’re setting up people effectively for their ED care and in what ways we’re part of the problem, unless perhaps we work on both sides.

So I asked for a little help here. I sat down virtually with Dr. Brooks Walsh, ED attending extraordinaire — author of Mill Hill Ave Command and Doc Cottle’s Desk — and with Jeff, an ED nurse from my area. We discussed how to work and play together better, including topics like handoff reports, useful histories, and typical ED courses of care.

Click here to listen or download (1:15, MP3 format)

A few of the bullet-worthy points:

  • Jeff’s hospital saves time in all trauma, stroke, and STEMI activations by assigning patients an alias immediately upon notification by EMS. That way registration isn’t lurking around while the team is trying to treat the patient.
  • Cath lab activations from the field are still often about trust — whether staff knows the individual provider or the particular service calling. Rightly or wrongly, there’s also a stricter de facto standard for activation during off hours when nobody wants to get out of bed.
  • For stroke, neurology may be in the room when you arrive, but more often, especially in smaller hospitals, they’re available by page or teleconference.
  • When bringing in the stroke, try and ensure that family who can testify to time-of-onset/time-last-seen-normal, as well as consent to treatment on the patient’s behalf, are present — ideally transported with you — not unavailable in a taxi somewhere.
  • When you walk in the room, the typical team is a doctor, a nurse, a tech, then any extras — residents or other students, surgery, pediatrics, whomever. And registration is the dude with the clipboard or computer, of course.
  • When reporting to the doc, focus on: first, anything that needs to happen immediately; second, information he can’t get elsewhere (i.e. not patient medical history unless it’s not available in the records, laundry list of negatives, etc.), such as how you found the patient, general context, changes en route, etc.
  • Written PCRs are usually not read due to difficulty obtaining them and general unfriendliness (hard to find info, obscure writing), but sometimes there’s useful stuff in there, particularly in the narrative itself.
  • Baseline patient info from EMS is great if we know the patient well (frequent fliers); baseline info from bystanders, staff, family etc. is okay but less reliable.
  • Get patients to their usual facility if at all possible, especially those with complex histories, and especially anyone with recent surgical history — otherwise they’ll just get transferred later.
  • “Take me to x, my doctor is there” (meaning PCP or specialist) — less important, but can be nice if there are chronic issues and they’d like to maintain the existing treatment plan.
  • Disagreements over patient triage or treatment: find the attending or perhaps resource nurse and voice your concern. In the long-term: raise issues with the hospital’s EMS liaison (either directly or through your internal chain of command).

Live from Prospect St: The Big Crunch (conclusion)

Continued from part 1 and part 2


In the end, all three patients receive spinal immobilization. You transport both pediatric patients to Bullitt Medical Center; the P12 assumes care of the mother and transports her to the same destination. No significant injuries are found upon follow-up assessments; however, when the P12 checks Samantha’s blood glucose, they find it to be 32 mg/dL. They administer D50, normalizing her sugar, which improves her level of consciousness; however, she remains confused and becomes somewhat combative. She does endorse substantial alcohol ingestion, is somewhat unclear on drug use, and continues to deny a history of diabetes.

After transferring care, both crews fill out state-mandated documentation to report child abuse, with regard to the mother driving two young children while under the influence and without appropriate car seats or other restraints. You write your documentation with extra caution, aware that it may eventually be used in a court of law.



This was a case where no patient was highly acute, but operational issues required some attention and medical confounders obscured the assessment.


General considerations for MVAs

With any significant MVA (or MVC for “motor vehicle collision,” since the DoT takes the position that nothing is truly accidental), there are several factors we should consider:

  • Scene safety. Wherever the scene may be, it’s generally at or near a roadway, and it’s a location that’s already proven itself accident-prone. In this case, we were situated in a truck yard somewhat off the main road. If it were a busier area, and we were first to arrive, we would want to park the ambulance to shield the scene from traffic, and request fire apparatus (for more blocking) and police (for traffic control). We should also consider the presence of chemicals or other hazardous material in an industrial area, which was not a problem here.
  • Extrication. The time to request additional resources is early. Heavy extrication, where vehicle frames need to be bent or cut, is usually performed by fire department ladder trucks or dedicated rescue apparatus; in this case, the driver’s door was dented and needed to be popped open (technically “confinement” rather than “entrapment”), and it was handled prior to our arrival.
  • Cause. Some accidents happen for obvious reasons, such as inattention. Sometimes they’re due to conditions, such as weather or visibility, which is a good clue that such conditions probably persist and might endanger you as well; protect the scene and be cautious during extrication and transport. Sometimes, accidents have a medical cause, which was the case here.
  • Damage. We are clinicians, not mechanics, but vehicle damage can provide clues to injury type and severity. Modern vehicles often develop horrific-looking body damage while yielding minor personal injury; automotive safety science has become quite advanced, and a large part of a car’s protection comes from intentionally crumpling to absorb impact. If occupants are restrained, the vehicle can easily eat up a large amount of shock without anyone suffering significant harm. In this case, we saw a front-left impact at seemingly moderate speed, so we anticipate a head-on type injury pattern with some lateral energy. Damage to the driver’s-side lower dashboard area, plus minor knee injury, suggested a “down and under” rather than “up and over” direction of movement, which is typical for a restrained driver; the windshield was also missing any apparent point-of-impact, which supports this. With the seatbelt and airbag, we were not too suspicious of frontal head injury, but we did look for evidence of lateral head impact against the window or side-wall; we found no obvious head trauma or internal vehicle damage. There was likewise no signs of internal impact from the children in the rear, although we remain suspicious of pelvic or abdominal trauma, since they were wearing lap belts without any torso restraints.
  • Number of patients. Life was made easier by the truck driver, who was obviously unharmed and decided to elope from the scene prior to our arrival. Samantha was making vague reference to her brother, but it seemed that he was coming to meet her and was not an occupant. It is somewhat bad form to forget about people, so it’s good to try and confirm these things, and the first-in responders (the fire department in this case) can help.



Just like in most cases, the majority of essential information was communicated in the first few seconds on scene.

Our eyeball exam from twenty feet was enough for an initial assessment on the kids. The Pediatric Assessment Triangle is a model for identifying pediatric life threats that focuses on obvious, big-payoff findings rather than details (like specific vital signs) which can be tough to measure. The three components are:

  • General appearance. This is overall impression and rough neurological status. Are they conscious? If so, sluggish, alert, groggy, engaged with their surroundings, tracking with their eyes? Is there any muscle tone or are they limp? Are they crying? If so, are they consolable? Do they look sick or well?
  • Work of breathing. This is respiratory assessment. Is the child struggling to breathe? Are they tripoding or assuming a sniffing position to maintain an airway? Is there accessory muscle use, pursed-lip breathing, nasal flaring, chest retractions? Are grossly adventitious breath sounds audible (i.e. wheezing, stridor, grunting, snoring)?
  • Circulation. This is general circulatory status. Is skin pink and warm? Is there clear cyanosis, pallor, mottling? Obvious bleeding?

From the first moments on scene, we were able to observe that the pediatric patients were: conscious, crying loudly (therefore with a patent airway and adequate breathing), generally unhappy but not acutely distressed, without obvious bleeding or other trauma, and with normal skin signs. That’s plenty for the initial triage — a more full assessment will come later, but it’s unlikely that we’ll uncover any true life threats.

How about mom? We initially notice no obvious issues except for an altered mental status, which may be masking other problems (such as pain or neurological deficits). We also don’t know the cause of the AMS. Is there alcohol involved? Probably: she directly endorsed this. Drugs? Perhaps: vehemently denying drug use is not uncommon in drug users, and there were purpura consistent with needle “track marks” on her arm. But even if present, neither of those precludes a concomitant traumatic head injury; drunk and high people can bump their head too. And we were reminded of the first rule of EMS: everybody is diabetic. Although the circumstances didn’t necessarily suggest hypoglycemia as the most likely cause, it fit the presentation, and all drunk patients are somewhat at risk for this complication. If she’d stayed in our care, glucometry would have been wise during transport.

Is spinal immobilization needed? Local protocol comes into play. The children are probably low risk. The mechanism as a whole is potentially risky, due to the possibility of side-on energy transfer and head injury, but generally is not too alarming and the assessment findings are fairly reassuring. In the case of the mother, she is the classic example of a poor reporter who cannot reliably describe neck or back pain or participate in a neurological exam; most selective immobilization protocols (such as NEXUS or the Canadian C-spine rule) would advise immobilization in such cases. In this instance, due to equipment shortcomings, one child was immobilized via KED and the other two patients immobilized to long boards, with towel rolls used liberally. The children were liberated almost immediately after arrival at the ED, after a clinical exam by the pediatric emergency physician. The mother began fighting her board after she was roused with D50.


Transport and documentation

This case highlighted the need for intelligent patient assessment to guide transport destinations. Although low-acuity pediatric patients can sometimes be assessed in an adult ED, it depends on the receiving physician’s level of comfort, so in many cases they’ll prefer to transfer them to a specialty center (and any time a patient has to be transferred from where we brought them, we’ve failed them somewhat).

In a similar vein, acute patients needing surgical intervention should always be delivered to trauma centers. Does mom need a trauma center? Since we’re unable to rule out a traumatic cause for her mental status, it’s probably wise, although perhaps not essential. Do the kids need a pediatric trauma center? Probably not; they are, by all appearances, doing fine. Finally, although we could transport parent and kids to different hospitals, it would be distressing to everyone and create logistical headaches (involving consent, billing, and other concerns), so Bullitt Medical Center (an adult trauma center as well as a pediatric ED, although not a pediatric trauma center) is a sensible destination. (Since it’s a larger hospital, it’s also more capable of sustaining the “hit” of receiving three patients simultaneously than a small community ED.) Since the mother is a more challenging patient, it makes sense for the paramedics to take her while our BLS unit acts as a bus for the kids.

As for documentation, depending on state law we may be required to report all instances of child abuse to protective agencies. (In this particular region, reporting is mandated for any child or elder abuse.) If so, local procedures should be followed; although the hospital will most likely perform such reporting as well, in many states this does not absolve EMS of its own responsibilities.

When documenting the call, be aware that charges may be pursued against the mother for neglect, driving under the influence, or other offenses. These may hinge upon your documented findings, such as altered mental status, lack of appropriate child restraints, or statements about substance use. Depending on local laws for mandated reporters, you may be required to report these findings directly to police, or you may actually be prohibited from doing so by HIPAA laws; in either case, however, they should be noted in your report.

Thoughts from WMEMS

This past weekend, I was able to attend the Western Massachusetts EMS Conference alongside such luminaries as Scott Kier and Kyle David Bates (of the extraordinary Pedi-U podcast). We sat through two days of outstanding lectures on various EMS-related topics, and walked away with some ideas and information I haven’t found anywhere else. Here are just a few of the unique pearls from the conference. Thanks to everyone for the great time!


Kyle David Bates on Mechanism of Injury

  • In an MVC, ejected (that is, fully ejected) victims have a 1/3 chance of a cervical spine fracture.
  • They also have around 25 times higher chance of mortality than an equivalent non-ejected patient.
  • Is “another death in the same vehicle” a legitimate concern when considering mechanism? Yes, but make sure that death wasn’t from an localized cause—for instance, a girder in the face, or they had a heart attack before they crashed.
  • How about “intrusion”? Over twelve inches into the patient compartment where your patient is found (meaning, visible from inside—not from the outside, which includes the buffer space of the walls), not including areas like the hood, trunk, etc. Alternately, over 18 inches into the patient compartment in areas where your patient is not found—for instance, the rear seating area, when you’re treating the solo driver.
  • “Distracting injuries” can mean painful injuries that distract the patient, but also gross stuff that distracts the provider. Consider a head-to-toe on virtually everyone, even when the funky arm fracture is drawing your attention.
  • Many “trauma” patients are no longer being treated with surgery anyway, so sending everything to the trauma centers overloads them for no reason.
  • One more reason why the sternal rub is not a great diagnostic: if they do clutch at their chest in response, is that localizing—or an abnormal, decorticate flexion response? Different GCS scores, but you can’t tell.
  • Are extremity injuries significant mechanisms? Penetrating injury proximal to the elbows or knees should be considered threatening to the torso, so yes. Pelvic fractures? For sure. (“How much blood can you lose into your pelvis? All of it!”)
  • With the automobile safety technology available today, you can crash fast, turn your car into a paperweight, but walk away unharmed. We no longer care about “high-speed,” only “high-risk,” which has many factors (see the Rogue Medic’s recent post on this).
  • Auto vs. pedestrians: kids get upper body injuries; adults get lateral trauma as we turn and try to get out of the way. Both can get run over.
  • Motorcycles. Harley-type riders seem to have more head injuries: they get hit by cars, due to low profile and dark clothing, and they wear partial helmets. Sports bikes get more extremity injuries: they wear good protection, are higher visibility, but they ride fast and run into things, breaking any and every bone they have.
  • Rollovers: no longer trauma criteria. You can roll and do great if you’re restrained. Number of rolls, final position, even roof intrusion have no correlation to injury severity.
  • Extrication time >20 minutes: no longer trauma criteria. Sometimes it just takes a while due to weather, access, etc, and newer vehicles are supposed to crumple more anyway.
  • Are burns trauma criteria? No. If they need specialized care, it’s a burn center, but this is not that time-sensitive—more a long-term management thing—so someone with burns and trauma should go to the trauma center instead, can be transferred later for burn care.
  • Helicopter transport: costs can range from $2,000 to $20,000 depending on distance, and insurers are refusing to pay many of these bills due to lack of necessity. Also consider the possibility of everyone dying in a fiery crash. Weigh cost vs. benefit.

Kyle David Bates on Shortness of Breath

  • Anxiety is caused by hypoxia; the cure for this is supplemental oxygen.
  • Sleepiness is caused by hypercapnia; the cure for this is bagging.
  • OPA or NPA? Testing the gag reflex may create a bigger airway problem (vomit). Better yet, check the mouth for pooled saliva; if present, there is no gag, use an OPA. If absent, they have a gag and are managing their own secretions, use an NPA.
  • Respiratory distress means there’s a problem, but they’re compensating (compensatory signs like tachypnea).
  • Respiratory failure means they’re decompensating (hypoxic/hypercarbic signs like altered mental status, cyanosis, falling sats)
  • Respiratory arrest means they’re not breathing.
  • Normal inspiration:expiration cycle about 1:2. Obstructive pulmonary problems impede expiration first, because that’s the passive process—it’s easier to inhale past obstructions because it’s an active process. So asthmatics have ratios like 1:4 or 1:5, they’re using active exhalation, and using auto-PEEP maneuvers. (Pursed lips in adults, grunting in kids.)
  • In adults, look for retractions intercostal (between the ribs) and sternal notch (between the clavicles); in kids, look substernal (below the ribs).
  • 40% of patients hospitalized with asthma have a pneumothorax! (Not necessarily clinically significant, though.)
  • Pulsus paradoxus/paradoxical pulses are a useful early sign of significant pulmonary dysfunction.
  • 90% of asthma attacks linked with an allergic reaction; however, rhinovirus (the common cold) may now be a contender. Others include: exercise (not sure why; maybe the temperature differential), active menstruation (asthma very common in young post-pubescent women—maybe the hormones), psychological (stress, panic), aspirin use.
  • Kids compensate great, so cyanosis (a decompensation sign) in kids is very late and very bad.
  • Risk-stratify these patients, because high risk patients can decompensate fast even if they look okay now. Previous hospitalizations? ICU admits? Intubations?
  • Cough asthma: no dyspnea, just dry coughing. It happens.
  • Smokers: measured in pack-years. 1 pack a day for 20 years is 20 pack-years, 2 packs a day for 5 years is 10 pack-years; 30–35 pack-years is where we start to see bad dysfunction.
  • Best place to check skin? Under the lower eyelid—lift it and check the mucus membranes. Dry for dehydration, pale for shock, blue for cyanosis, the whole gamut.
  • Ascites is a sign of fluid overload; try the fluid wave test. (Scroll down to “Examining for a fluid wave” here.)
  • Nebulized ipratropium/Atrovent: its role is mainly to reduce mucus and secretions (cf. atropine). Tachycardia etc. is not a contraindication, because it’s not absorbed systemically; it remains in the lungs.
  • Give nebs by hand-held mask or T-piece instead of strapping it to their face; that way you have a warning of deterioration when they can no longer hold it to their face.
  • Bronchodilators may not work great in beta-blocked patients.
  • Steroids take hours to have an effect, but the earlier they’re given the better the outcomes; give ’em if you have ’em.
  • If they need RSI, ketamine is nice because it also bronchodilates.
  • “Facilitated intubation” (i.e. snow ’em with a ton of benzos/narcs)? Be careful, because if you don’t get that tube, it’ll take forever to wear off; these aren’t short-duration drugs.

Kyle David Bates on Pediatrics

  • Use the Pediatric Assessment Triangle! Appearance, Work of Breathing, Circulation.
  • Appearance: General activity level and impression. Muscle tone, interactivity and engagement, look/gaze, crying. Appropriate appearance depends on age. Indicates a CNS/metabolic problem. (Make sure to check their sugar.)
  • Work of Breathing: Flaring, retractions, audible sounds, positioning. Remember they’re belly breathers.
  • Circulation: mostly skin. Cyanosis (bad), pallor, mottling (pallor + patchy cyanosis), marbling (in newborns—bright red skin with visible blood vessels, maybe some white areas—this is normal). Check cap refill on bottom of foot in little kids.
  • Shock in kids is most often from dehydration.
  • Airway: crying is a great sign. Remember to pad under the shoulders when lying flat, their huge heads can tip them forward and block the airway. Avoid NPAs in infants. In very small kids, breath sounds can transmit, so you may hear upper sounds in the chest or chest sounds in the trachea.
  • Under 2 months: peripheral cyanosis is normal, central cyanosis is bad. Limited behavior, often won’t visually track. Ask parents if their behavior is normal. Ask about obstetric history, it’s still relevant. They have no immune system really, so any infection (temp over 100.4) is a serious emergency.
  • 2–6 months: social smile, will track visually, recognize mom, strong cry and can roll/sit with support. May still be okay with strangers, but try to keep them with parents; if parents like you, they’ll like you
  • 6–12 months: stranger anxiety (unless they’re raised very communally). Very mobile and explore with their mouth, so always think about foreign body airway obstructions, especially up the nose, especially for dyspnea with sudden onset. Separation anxiety, so keep with parent. Offer distractions (toys, etc.). Do exam from toe to head so they get used to you before you reach their face.
  • 1–3 yrs (toddlers, “terrible 2s”): mobile, curious, opinionated, ego-centric, can’t abstractly connect cause-and-effect but learn from experience. Keep with the parents, distract them, assess painful part last (or everything you touch afterwards will hurt). May talk a lot or not much, it’s all normal, but they always understand more than they let on, so be careful what you say.
  • 3–5 yrs (preschool): magical thinkers, misconceptions (“silly” ideas like if they leak too much they’ll run out of blood), many fears (death/darkness/mutilation/aloneness), short attention span. Explain things in simple terms, relate to them (any cartoons or toys in the house you recognize?), use toys, involve them (here hold this, which arm should I use, etc). Don’t ever negotiate, just tell them what to do; praise them often; never ridicule.
  • 6–12 yrs (school aged): talkative, mobile, may not get cause and effect, want reassurance, involvement, praise. Live in present, may not think about danger or risk. Peer involvement. Speak directly to them, anticipate questions (will this hurt? am I going to die?), give simple explanations, don’t ever lie, respect privacy. If you need to do something painful (IVs, etc.) don’t tell them until just before, or they’ll dwell on it. Head-to-toe okay.
  • 13–18 (adolescents): regress when hurt or sick—act like big toddlers. Can understand and theoretically have common sense, but still take risks. Peer support. Speak directly, give concrete explanations, respect privacy, have patience.
  • Under 21 usually considered “pediatric.”
  • Degree of fever temp not associated with severity. No actual danger to brain until 106–107 degrees F or so.

Dr. Lisa Patterson on Trauma and Field Triage

  • RR <20 in infants is trauma center criteria since this is the one easily-measurable vital sign for them.
  • Crushed/degloved/mangled extremities: although not life-threatening, still worth the divert, because usually needs multi-specialty care (plastic surgery, orthopedics, hand specialists, etc.) to maximize function.
  • Calling in “altered mental status” or “unresponsive” is not super helpful—give a GCS or otherwise specify what you mean, there’s a big range here.
  • Trauma activations here are typically three tiers: category 1 (life threat), category 2 (no immediate emergency, but some concern or suspicion due to mechanism or presentation), consult (no concern on initial presentation, but later decision to admit, trauma paged down to consult).
  • Activation may alert/standby numerous parties including radiology, OR, pharm, blood bank, lab, ICU, respiratory, anesthesiology, social workers, etc. Not a small thing.

Sean Dorr on OEMS investigations

  • [This is Massachusetts-specific information; local providers can contact me directly if they want to hear about some of this material.— ed.]

Ginnie Teed on Organ and Tissue Donation

  • Donation is hugely hugely valuable and lifesaving, but there’s not nearly enough. About 60-70% of Americans are registered donors, around 100 million people, but only 1% end up as usable donors and we need far more. Low rates aren’t from consent, they’re from the logistics of getting viable candidates.
  • Uniform Anatomical Gift Act (UAGA) is federal regulation providing basic requirements for process; states use this standard to form their own systems. Registered donors must be recognized and organ procurement agencies are required to advocate for them even against wishes of family, etc. Driver’s license “opt-in” now considered legal consent in some but not all states.
  • National Organ Transplant Act establishes the rules of the registry, blinds the entire process, prevents manipulation or line-jumping; the database is centralized and controlled; you can’t legally buy or otherwise get around the system. Manipulation is taken very very seriously and massively investigated, because it’s not only unethical, the pall it casts over the process makes others decide not to donate—the result is many lives lost.
  • Referrals (i.e. calling procurement organization to say, “we have a potential donor”) come from hospitals, nursing homes, clinics, whomever. This process is exempt from HIPAA.
  • Tissues tested more heavily than organs, because if an infection is carried through transplanted (i.e. nonliving) tissue, it’s almost impossible to eradicate.
  • Organs used: vital organs. Heart, lungs, kidneys and livers (most common), pancreas, sometimes small bowel. Max 9 organs per donor.
  • Tissues used: not living, usually good for about 24 hours after death. Bones (not marrow, which is living), although we try to not obviously mutilate people (for their family’s sake), skin (hugely beneficial), corneas, vessels, heart valves, pericardium, connective tissue (for orthopedic repairs).
  • Three ways to declare death: neurological (no brain activity; body only alive due to our mechanical support; recovery team responds to site and performs planned recovery); cardiac death (heart stops; not planned); planned extubation/cardiac death (patient is mechanically supported, determination made that there is no possibility to survive on their own; vent is pulled, if heart stops within 59 minutes they can take some organs; usually just the durable liver and kidneys unless bypass is available).
  • Live organs can only be taken from perfused patients. Someone “dead” (i.e. no pulses) can be a tissue donor but not an organ donor unless you get ROSC. No point in continuing CPR to “maintain the organs” if there’s no possibility of getting return of circulation.
  • EMS documentation absolutely critical for determining donor eligibility. Need to know downtime in arrests, how much CPR, any ROSC no matter how brief, events/mechanism leading to arrest. There are hard limits on fluid/blood/colloids received, so they must know how much fluid you gave (reasonable estimate is fine). Must document all needlesticks, number and location; if they find any holes that aren’t accounted for they’ll have to assume they’re a drug user or that additional lines were started and extra liters given. If you don’t want to document something at least tell the receiving staff.
  • If blood is drawn, label must be placed so that expiration date of tube is still readable (FDA requirement).
  • Every donor can save up to 200 people; failure to document can kill just as many.

UMass Memorial LifeFlight on Air Ambulance Transport

  • Consider: how do you want the helicopter used? Need their higher level of care? Rapid transport to trauma center? Transport multiple patients in an MCI to more distant hospitals to reduce burden on closest facilities? Can even split the crew to provide higher level of care for multiple ground ambulances.
  • Many services simply will not fly into a hazmat situation.
  • Best makeshift landing zones are schools—big open areas, everyone knows where it is.
  • Wires are a major hazard, make sure to warn pilot—you can see them but he can’t.
  • Need about 100 x 100 ft for an LZ, or 35–40 big-ish strides per side. Secure the area against bystanders.
  • Hazards to clear, alert the pilot to, or just pick another spot: poles, antennas, trees, bushes, livestock, stumps, holes, rocks, logs, mile markers, debris. Tall grass can hide hazards. Close all vehicle doors, put your chinstraps on, secure loose items. Don’t stare at the bird landing, turn your back and watch for hazards.
  • Bad surfaces are dust, dirt, snow, ice, hay. Snow should ideally be very fluffy or very packed. If they land and get iced they may not be able to take off again. Don’t wash down a dusty LZ unless pilot requests it. Paved areas are simplest and best. Large clear roadways can land multiple choppers in a row.
  • Lighting options: orange traffic cone at each corner, with a handlight placed in each at nighttime. Or, flashing ministrobe at each corner. Or, vehicle headlights crossing the LZ. Don’t shine anything up at the helo, don’t mark with loose material, don’t use flares.
  • Designate one person as LZ Command (not the IC). Nobody else communicates with the helicopter. Your portable radio probably won’t reach them; use the mobile in the truck. If there’s any hazard on final approach, say one word—”STOP”—and pilot will abort.
  • Most crashes are pilot error, and most pilot error is due to fatigue. There should be hour limits for a pilot, and this is a valid reason to refuse to fly.

Detective John LeClair, EMT-P, on Opiates and Prescription Pills

  • Heroin is still big, but pills are a huge player now too. You get an easy prescription from a walk-in clinic or ED, pay maybe a couple bucks with Medicare/Medicaid, and can not only sell them for easy cash but can crush and snort/shoot it for the same effect as heroin. Then if money or access runs low, you end up on heroin anyway to chase that high.
  • Oxycontin/oxycodone best selling narcotic in the nation ten years ago, but now on the wane. You scrape off the time-release coating, crush it and snort or chew it. “Hillybilly heroin,” “blue,” “oxycotton,” “kicker,” etc. Street price about $1/mg (40mg, 80mg, 160mg common), so many turned to crime. In Aug 2010, manufacturer (Purdue) added a “geling” agent which turns it to gel when it contacts water, making it difficult to snort. Try to snort this Oxycontin OP and it turns into a ball in your nose. Some people are sticking straws/tubes up in there to try and get it deeper and deeper, so airway obstructions are happening.
  • Percocet: oxy plus acetaminophen. For years the most common analgesic for sports injuries, so common among youth. Kids shared ’em, put out bowls of them at parties, girls prostituted themselves for pills. Taken with alcohol the APAP/Tylenol kills your liver. “Littles,” “little babies,” “little dogs.”
  • Opana/oxymorphone: getting popular after Oxy OP started ruining everyone’s fun. Same idea but you can still snort it. Twice as strong, and costs twice as much ($2/mg)
  • How to grind? Take a hose clamp, cut it, straighten it, tape it down, run the pill across the holes to grind it. Or use a Pedi-Egg, which collects the powder for you. The finer, the better high.
  • Heroin: snort, “skin pop” (subcutaneous), mainline. Must be pretty pure to snort, which it now tends to be, so popularity grew (people were afraid of needles due to HIV). However now some HIV/Hep is spreading through bloody noses and sharing straws anyway.
  • Smack, horse, china white, chiva, junk, H, tar, black, fix, dope, brown, dog, food, negra, nod, white horse, stuff. Dealers have their own “brand names.”
  • Heroin addicts are creatures of habit; get high same place, same way. Any change in their routine (e.g. different location) can get them amped up, changing their sensitivity and leading to OD even with their usual dose. Consider this if you find an OD somewhere like a car or alley.
  • “Cotton fever”: they pluck out wads of cotton from cigarette filters and drop it in the heroin to help filter it. Sometimes when they draw out the liquid they get a bit of cotton, and when they shoot it they get a sort of phlebitis/infection/sepsis.

Ensuring Appropriate Triage

It’s no secret that I’m a strong believer in patient advocacy, and that I feel one of the most important roles for EMS is to ensure that patients get directed to the right destination with the right priority and resources. Bob Sullivan at EMS Patient Perspective recently gave a post that hits on all of these points, discussing how to ensure that “undertriaged” patients don’t fall through the cracks at the ED. These details on how to work the system are some of the most valuable things we learn with experience, and to a large degree they’re what allow the ten-year veteran to help patients in ways the novice can’t. Give it a read!

Live from Prospect St: The Reluctant Tumble (conclusion)

Previously part 1 and part 2

Being reluctant to force Joe into an undesired ambulance ride, the crew contacted their supervisor. He arrived, evaluated the patient, agreed with their conclusions, and called Dr. Scrubs to discuss the matter. He was unable to dissuade the doctor from his decision.

The crew and supervisor approached Joe together and informed him of the circumstances; although all parties agreed that he should rightly be able to refuse transport, they felt they had been overruled by a higher authority, and if he would not come voluntarily they would be forced to compel him. Under this duress, Joe finally agreed to be transported, loudly and vocally protesting.

He was taken to his preferred hospital and care was handed off to staff with a full description of the situation. Less than 30 minutes later, another crew was sent back to the hospital to return Joe home; the attending ED physician had deemed his involuntary hold to be invalid and inappropriate, and refused to hold him against his will. No further evaluation was performed.

The encounter was documented extensively and quality improvement measures involving EMS and the base physician are expected.



This case was not medically complicated, but it involved some difficult issues of consent and risk. Let’s look at the medicine and then at the wrinkles.

Medical Considerations

We were dispatched for a chief complaint of a fall — a very common mechanism of injury. When evaluating the fall, what should our main concerns be?

First, we should examine the mechanism itself. How far was the fall? In this case, as it often is, the fall was from a standing height, and from a standstill (i.e. not propelled while running, stumbling while breakdancing, etc.). This is often seen as the dividing line for significant versus non-significant falls; in many areas, falls from standing height or greater are considered an indication for spinal immobilization. (Other areas say greater than standing height; 3x standing height or more; or other numbers.) The elderly in particular are considered at higher risk for spinal injury, due to weakened bones and tighter ligamentous connections between vertebrae.

Typically, a blow to the head with loss of consciousness is also considered high risk for spinal injury. This is under the assumption that a blow with enough force to cause LOC may also have enough force to damage the spine. These considerations are all valid, but should only be seen as some of the many factors involved in stratifying risk; they must be considered alongside other elements like the physical assessment. In some systems, you may be forced to immobilize based on mechanism without other considerations. In others, you may be allowed to rule out immobilization based on certain findings, most of which Joe has; for instance, he denies neck or back pain or tenderness, denies peripheral parasthesias (numbness or tingling) or weakness, ambulated well, turns his head, and has no confounding factors like a distracting injury or altered mental status. In any case, the post-fall presentation was so benign that risk seemed low, and given the patient’s overall reluctance it is highly unlikely that he would have consented to a collar and board.

The use of warfarin (trade name Coumadin), on the other hand, does significantly increase the risk of intracranial hemorrhage (ICH), especially after blunt trauma to the head. Although again, Joe’s assessment was very reassuring — normal vitals, no complaints, and a baseline neurological status — it is very possible for ICH to have a delayed onset of presentation. The best example of this is the subdural hematoma, where cases of moderate severity sometimes take hours or days to develop, due to the venous rather than arterial source of bleeding. This delay is particularly common in the elderly, where (possibly due to shrinking of the gray matter, which leaves additional room for blood to collect before pressure begins compressing the brain) a classic scenario is the fall with a blow to the head, no complaints for hours afterward, and then sudden deterioration. Some sources state that 60% of geriatric fall patients who experience LOC from a blow to the head will eventually die as a result. Since in this case, we were delayed on scene for quite some time, there would be value in ongoing and repeated assessments of symptoms, neurological status, and vital signs while we waited around.

The patient’s pupils were unusual in appearance, which can be an indicator of brain herniation; however, this syndrome typically presents with one very large and round pupil. An irregularly shaped pupil as we saw here is more indicative of a structural defect, the most common of which is probably cataract surgery, which can leave the pupil off-round.

An incomplete medical history is common in scene calls involving the elderly. However, many do carry med lists, and in most cases you can reconstruct the majority of the patient’s diagnoses based on their medications. In this case, we found digoxin (or digitalis), which is almost always used to control atrial fibrillation; this is consistent with the patient’s irregular pulse, and with the warfarin, which helps prevent A-fib induced clots. Metformin (Glucophage) is an antidiabetic that helps control glucose levels. Citalopram (Celexa) is a common antidepressant of the SSRI type. Advair (fluticasone and salmeterol) is a preventative asthma/COPD inhaler combining a steroid with a long-acting beta agonist; it is used regularly to minimize flare-ups and is not a rescue inhaler. Omeprazole (Prilosec) is used for gastroesophageal reflux disease (GERD), aka heartburn. Ibuprofen is a non-steroidal anti-inflammatory (NSAID) used for pain relief and reduction of inflammation.

As VinceD noted in the comments, one essential question in any fall — and indeed in almost any traumatic event — is what caused it. Here we have a somewhat vague account which suggests a mechanical fall, i.e. tripping or loss of balance; this is not necessarily benign, as a history of repeated mechanical falls suggests deteriorating coordination or strength, but it is usually not indicative of an acute medical problem. However, many elderly patients (and some of the younger ones, too) will attribute any fall to tripping, so this claim should be taken with a grain of salt. It helps to have a witness to the event, as we do here, although witnesses are not always reliable either. In any case, what we want to know is: what happened just before the fall? Was the patient simply walking and tripped on a rug? Did he have seizure-like activity? Was he standing normally when he suddenly lost muscle tone and collapsed? Did he complain of feeling faint or dizzy? Was he exerting himself or straining on the toilet? Things happen for a reason.


Ethical and Legal Considerations

The bigger question is whether it’s okay for Joe to refuse transportation.

This is an odd question, because ordinarily we assume that people are free to go where they want, and calling 911 (or having it called for them) does not surrender this right. However, there is an attitude among those with a duty to act, such as healthcare providers and public safety officers, that individuals who are not cognitively able to understand their situation and make decisions in their best interest need to be protected from their own impaired judgment. This is equivalent to taking your friend’s keys so he won’t drive drunk, under the assumption that he wouldn’t want to drive drunk were he making sensible decisions. The legal term is implied consent, the same principle by which we transport children, drunks, and unconscious people.

How do we know if somebody is unable to make their own decisions? There is not an obvious line. For many providers, their rule of thumb is the old “A&Ox4”: if someone knows who they are, where they are, when it is, and what’s going on, then they are alert and oriented and capable of making decisions. Of course, this is only one piece of the mental puzzle. Social workers, psychiatrists, and other specialists have a full battery of tests that can help further reveal cognitive capacity. Can you perform these in the field? It’s probably more than you’re likely to do, although you might perform something simple like the MMSE. But some basic questions that highlight the patient’s judgment can help supplement your routine assessment — questions like, “Suppose you were at the mall when you started to smell smoke and heard the fire alarm. What would you do?” where any rational response is acceptable.

It’s important for the patient to be able to demonstrate that they understand what’s going on. Even someone with ordinary mental competence — unless they’re a fellow knowledgable healthcare professional — needs to be informed (to the best ability of the provider) of the possible risks and consequences of refusing care. In this case, it would involve giving them some description of the above possibilities (spinal fracture, head bleed, etc.), and ideally having the patient then relate them back to you, demonstrating good comprehension of those facts. The base physician’s view that Joe hadn’t fully demonstrated this understanding was a key part of his decision that he needed to be transported against his will.

Other important points are to ensure that the patient knows that refusal doesn’t preclude future care (“if you change your mind, you can always call back”); and that the ability of the providers to evaluate the patient on scene is at best limited. Any implication that you know what’s really happening to the patient or can definitively rule in or rule out any medical problem is unwise and legally risky. In fact, even suggesting possibilities or probabilities can be problematic if you’re wrong; on the other hand, failing to do so can leave them uninformed, so this can be a Catch 22. Your best bet is to outline some basic possibilities, carefully inform them of the limits of your training and resources, and be smart enough that you generally know what you’re talking about in the first place.

One complication in this case is the presence of someone who claims to be Joe’s health care proxy. A proxy (closely linked to the idea of a durable power of attorney) is a person whom, while of sound mind, you designate to make decisions for you if at a later time you are not of sound mind. Crucially, if you are still capable of decision-making, a proxy does not have the ability to override you; their role is to act on your behalf when you cannot. In other words, the decision of Joe’s proxy is only relevant if we do find (or in some areas, if an authority such as a judge has decided) that he’s incompetent to refuse or consent to treatment; thus, her presence does not necessarily alter the basic dilemma.

In this case, the physician’s attitude was that the problem was primarily medical: does the patient need emergency department evaluation to rule out dangerous processes? Medically, he does. However, the first question actually needs to be: Is the patient capable of evaluating risk and making decisions in his own best interest? If he is, then he is technically “allowed” to decide whatever he wants. Even a clearly dying man can refuse medical care based on religious views, personal preference, or any reason whatsoever (although barring a proxy or advanced directive, once he’s unconscious he can usually be treated under implied consent). This is different from the person who actively tries to take his own life; for philosophical reasons we view this as different from passively allowing oneself to die for lack of medical treatment. We prevent people from committing suicide but allow them to refuse medical care.

Realistically, although this fundamental right does not change, it’s fair to consider the surrounding medical circumstances to help decide how pressing and high-risk the matter is. In this case the doctor clearly felt that the risk was so high that it required going to extraordinary lengths, including overruling the patient’s own decisions and potentially even harming him, to ensure that a dangerous situation wasn’t “missed” — in short, that the ends justified the means. Dr. House is famous for this approach.

Legally, in most areas EMS providers are seen as operating under the bailiwick and legal authority of their medical director, and online medical control is an extension of this authority. In other words, within reason we are bound by the orders of medical control. The details of this relationship vary, and are not always fully explored. For an example, consider this true story from 1997 in New Jersey:

A North Bergen dual-medic crew is dispatched to a pregnant, full term female in cardiac arrest. Downtime is unknown, and they work the code for a number of minutes without response. Determining that the mother is likely unsalvageable, and concerned for the health of the fetus, they contact medical control. After a “joint decision” the base physician verbally talks them through performing an emergency C-section on scene. They deliver and successfully resuscitate the fetus, and both patients are transported. The mother is declared dead soon afterwards, but the infant lives for a number of days before dying in the hospital. In the aftermath, the paramedics are cited for violating their scope of practice, and their licenses to practice are revoked in the state of New Jersey. The physician is forced to undergo remediation training to maintain his medical control privileges.

Is the moral that acting in the patient’s best interest is not always a defense against liability? Maybe. Is the moral that medical control cannot authorize you to perform otherwise illegal acts? Maybe. Is the moral that we should protect ourselves before the patient? I don’t know about that, but it’s something to think about. In this case, the course for Joe that seems most ethical to me — allowing the patient to make his own decisions — also lets us avoid potential liability for battering and kidnapping. However, it does force us to refuse a direct order from medical control. Invoking our supervisor gives us a bigger boat either way, and would be a big help to protect us from trouble coming from our employer, one of the most likely sources. It’s also true that, while we may have believed that Joe was competent, he is at least somewhat diminished, so we’re less than completely confident. Nobody wants to put themselves on the line by taking a stand, only to be proven wrong.

Fortunately in this case we were able to avoid getting violent at all, but it was a near thing. If it did prove necessary, it should have been done with ample manpower and many hands; in some areas chemical sedation by paramedics may also be authorized. And I would certainly not recommend acting without the doctor’s signature on a legal document.

With everything viewed in retrospect, the situation would have been much more easily resolved had the doctor not been involved in the process. At the same time, however, if a simple refusal had been accepted, and CQI later went over the call — especially if Joe experienced a bad outcome — the crew would have been in a difficult place.

No matter what, such a situation is highly unusual, flush with liability, and should be thoroughly documented in all respects.