Clinical Judgment: How to Do Less

 

It was around 11:00 AM when we were called to a local skilled nursing facility for a hip fracture. The patient was a 61-year-old male with mild mental retardation and several other issues, who’d fallen last night while walking to the bathroom. He was helped back to bed with moderate hip pain, and the staff physician stopped by to check him out. A portable X-ray was performed, which the physician interpreted as showing a proximal femur fracture as well as an associated pelvic fracture. This was communicated to us via a scrawled note and a cursory report.

The patient was found resting comfortably in bed, semi-Fowler’s and alert. He had no complaints at rest, although his pelvis and left femoral region were mildly tender and quite painful upon movement. No deformity was notable and there was no obvious instability. His vitals were stable and he was generally well-appearing, in no apparent distress. He denied bumping his head and had no pain or tenderness in the head or neck.

We gently insinuated a scoop stretcher underneath him, filled the nearby voids with towels and other linen, and bundled him into a snug, easily-movable package. Then we gave him the slow ride to his requested emergency department, a teaching hospital in town just a few minutes away.

We rolled into the ED and were lifting him into bed on the scoop when a young man entered the room, bescrubbed and serious-looking. I gave a brief report. As the words “pelvic fracture” left my lips, his mental alarms started visibly beeping and flashing, and he hurriedly asked, “What kind of pelvic fracture?”

“We don’t know. All we’ve got is the radiology note, which doesn’t say much.”

“Okay, but pelvic fractures can be a big deal. It could be … ” he sucked in air, “… open-book. There could be a lot of bleeding.”

I stared at him. “Well, sure. But he’s been stable since last night, and has a basically normal physical with no complaints at rest. He’s not exactly circling the drain.”

He didn’t seem to hear me as he briskly approached the patient and began poking him and asking questions. While we pulled our stretcher out of the room, he asked, “Does your neck hurt at all?”

Now that the patient had been stuck on a scoop stretcher for over twenty minutes, he thought for a moment and then shrugged. “Sure.” The doctor immediately ordered the placement of a cervical collar.

As we escaped, he was on the phone to the SNF, and the last thing I heard was him berating them with his urgent need to know exactly what type of pelvic calamity the patient had suffered.

 

What was the failure here? It was a failure of clinical judgment.

Clinical judgment is a phrase which means different things to different people, and often its meaning is so nebulous (much like “patient advocacy“) that it sounds good while saying nothing. But most would agree that it means something like this: the ability to combine textbook knowledge and personal experience, applying them intelligently to the current patient’s situation to yield an accurate sense of the possible diagnoses and the costs vs. benefits of possible treatments. In other words, it means knowing what the patient’s probably got and what to do about it, which is the heart of medicine anyway. So what’s all the fuss about?

In reality, when clinical judgment is mentioned, what’s often meant is something specific: the wisdom to know when something’s not wrong. Much of medicine is about planning for the worst, ruling out the badness, and looking for the unlikely-but-possible occult killer that nobody wants to miss. As a result, we often act as if nearly everybody is seriously ill, even when they probably aren’t.

On a practical level, most complaints — from chest pain to the itchy toe — could conceivably represent a disaster. Anything’s possible. So if we want to truly adopt perfectly mindless caution, we should be intubating every patient and admitting them directly to the ICU so that we’re ready when their skin melts off and their eyes turn backwards.

But we can’t do that, and we shouldn’t. So how do we know when to do a little less? Clinical judgment.

Clinical judgment is the acumen to assess a patient and say, “I think we’re okay here. Let’s hold off on that.” It’s what you develop when you have both the knowledge and experience to understand that a person is low-risk, and that certain tests or treatments are more likely to harm than to hurt them. That doesn’t mean that nothing will be done, or that more definitive rule-out tests will not occur, but it means you’re not freaking out in the meanwhile. It’s a triage thing.

Put another way, imagine the patient who you’re placing in spinal immobilization, or providing with supplemental oxygen, or to whom you’re securing a splint. They ask, “Look, I don’t much like this; do I really need it?” Well, I don’t know, rockstar — does he? If you’re simply acting on algorithms, reflexively doing x because you found y, then you really don’t know. How important is that oxygen? To answer that, you’d need to truly understand the benefits versus the potential harms, which means having a strong grasp of the mechanism of action, familiarity with the relevant literature (including the pertinent odds ratios, NNT and so forth), prior experience with similar patients, et cetera… only with that kind of knowledge do you really understand what’s happening. In essence, the patient is asking for the informed element of informed consent, something he’s entitled to, and you can’t provide it if you don’t have it yourself.

But when you do develop that depth and breadth of knowledge, you gain a special ability. It’s the ability to do less. When you truly understand what you’re dealing with, and more importantly, what you’re not dealing with, you can titrate medicine to what’s actually needed and stop there. Along with the knowledge comes the confidence, because you don’t merely know, you know that you know; in other words, you don’t need to take precautionary steps merely because you’re worried there might be considerations you don’t understand.

When it comes to withholding anything, even the kitchen sink, you might ask, “isn’t there risk here?” And strictly speaking, there is risk. But you can set that bar wherever you want. The important thing to grasp is that “doing everything for everyone” is not the “safe” approach; overtriage and overtreatment are not benign. All those things you’re doing have a cost. They may cause real harm. Even at best, they cost time and money, and subject the patient to unnecessary discomfort and inconvenience. We’d like to minimize all that whenever possible.

So, we return to the gentleman with the pelvic fracture. Strictly speaking, fracture of the pelvis has the potential to be life-threatening; certain types of unstable fracture can cause massive bleeding, along with damage to nervous, urinary, and other structures. So a textbook response to “pelvic fracture?” might be to treat it as a high-risk trauma.

But a patient with an unstable, severely hemorrhaging open-book pelvic fracture probably wouldn’t look like that. It would be evident; it would cause a number of apparent effects, such as pain and distress, shock signs, altered vitals, deformity or palpable instability. Except in bizarre cases or in patients who are clinically difficult to evaluate, big problems create big changes. While it’s true that we don’t know exactly what the X-ray showed, so one could theoretically argue for any conceivable pathology, there’s no question that the patient appeared stable, had remained unchanged for many hours, and had apparently been judged low-acuity after evaluation and imaging by his own doctor. In other words, let’s take it easy.

The question of spinal immobilization is another example. Strictly speaking, could we rule out the possibility of a cervical spine fracture? Well, no. Not without CT and MRI and even then who knows. But the fall was many hours ago, the patient was freely mobile and turning his head throughout that period, had no peripheral neurological deficits, denied striking his head or loss of consciousness, and quite frankly, had no pain until he spent twenty minutes with his head against a metal board.

It’s not often that you find a doctor more concerned about C-spine than an EMT. How did it happen here?

Despite the fact that we delivered the patient to a major tertiary center, it was nevertheless a teaching hospital, and the new interns had just hit the wards. While this particular clinician was undoubtedly smart and well-educated, at this stage he had about two weeks of experience behind him, and that is not conducive to providing judicious (rather than applied-by-spatula) care. He had neither the experience to know when to take it easy, nor the confidence in that experience to stand by such a decision.

We don’t want to take this concept to its extreme, which would involve doing very little for most of our patients. In the end, this is still emergency medicine, and emergency care will always involve screening for the deadly needle in the benign haystack. There’s also danger in simply becoming lazy and burned-out, and using Procrustean application of cynical “street smarts” to justify never bothering with anything. The real goal is to do the right things for the right reasons, no more, no less. And to get to that point, you have to put in some time.

Live from Prospect St: The Big Crunch (conclusion)

Continued from part 1 and part 2

 

In the end, all three patients receive spinal immobilization. You transport both pediatric patients to Bullitt Medical Center; the P12 assumes care of the mother and transports her to the same destination. No significant injuries are found upon follow-up assessments; however, when the P12 checks Samantha’s blood glucose, they find it to be 32 mg/dL. They administer D50, normalizing her sugar, which improves her level of consciousness; however, she remains confused and becomes somewhat combative. She does endorse substantial alcohol ingestion, is somewhat unclear on drug use, and continues to deny a history of diabetes.

After transferring care, both crews fill out state-mandated documentation to report child abuse, with regard to the mother driving two young children while under the influence and without appropriate car seats or other restraints. You write your documentation with extra caution, aware that it may eventually be used in a court of law.

 

Discussion

This was a case where no patient was highly acute, but operational issues required some attention and medical confounders obscured the assessment.

 

General considerations for MVAs

With any significant MVA (or MVC for “motor vehicle collision,” since the DoT takes the position that nothing is truly accidental), there are several factors we should consider:

  • Scene safety. Wherever the scene may be, it’s generally at or near a roadway, and it’s a location that’s already proven itself accident-prone. In this case, we were situated in a truck yard somewhat off the main road. If it were a busier area, and we were first to arrive, we would want to park the ambulance to shield the scene from traffic, and request fire apparatus (for more blocking) and police (for traffic control). We should also consider the presence of chemicals or other hazardous material in an industrial area, which was not a problem here.
  • Extrication. The time to request additional resources is early. Heavy extrication, where vehicle frames need to be bent or cut, is usually performed by fire department ladder trucks or dedicated rescue apparatus; in this case, the driver’s door was dented and needed to be popped open (technically “confinement” rather than “entrapment”), and it was handled prior to our arrival.
  • Cause. Some accidents happen for obvious reasons, such as inattention. Sometimes they’re due to conditions, such as weather or visibility, which is a good clue that such conditions probably persist and might endanger you as well; protect the scene and be cautious during extrication and transport. Sometimes, accidents have a medical cause, which was the case here.
  • Damage. We are clinicians, not mechanics, but vehicle damage can provide clues to injury type and severity. Modern vehicles often develop horrific-looking body damage while yielding minor personal injury; automotive safety science has become quite advanced, and a large part of a car’s protection comes from intentionally crumpling to absorb impact. If occupants are restrained, the vehicle can easily eat up a large amount of shock without anyone suffering significant harm. In this case, we saw a front-left impact at seemingly moderate speed, so we anticipate a head-on type injury pattern with some lateral energy. Damage to the driver’s-side lower dashboard area, plus minor knee injury, suggested a “down and under” rather than “up and over” direction of movement, which is typical for a restrained driver; the windshield was also missing any apparent point-of-impact, which supports this. With the seatbelt and airbag, we were not too suspicious of frontal head injury, but we did look for evidence of lateral head impact against the window or side-wall; we found no obvious head trauma or internal vehicle damage. There was likewise no signs of internal impact from the children in the rear, although we remain suspicious of pelvic or abdominal trauma, since they were wearing lap belts without any torso restraints.
  • Number of patients. Life was made easier by the truck driver, who was obviously unharmed and decided to elope from the scene prior to our arrival. Samantha was making vague reference to her brother, but it seemed that he was coming to meet her and was not an occupant. It is somewhat bad form to forget about people, so it’s good to try and confirm these things, and the first-in responders (the fire department in this case) can help.

 

Assessment

Just like in most cases, the majority of essential information was communicated in the first few seconds on scene.

Our eyeball exam from twenty feet was enough for an initial assessment on the kids. The Pediatric Assessment Triangle is a model for identifying pediatric life threats that focuses on obvious, big-payoff findings rather than details (like specific vital signs) which can be tough to measure. The three components are:

  • General appearance. This is overall impression and rough neurological status. Are they conscious? If so, sluggish, alert, groggy, engaged with their surroundings, tracking with their eyes? Is there any muscle tone or are they limp? Are they crying? If so, are they consolable? Do they look sick or well?
  • Work of breathing. This is respiratory assessment. Is the child struggling to breathe? Are they tripoding or assuming a sniffing position to maintain an airway? Is there accessory muscle use, pursed-lip breathing, nasal flaring, chest retractions? Are grossly adventitious breath sounds audible (i.e. wheezing, stridor, grunting, snoring)?
  • Circulation. This is general circulatory status. Is skin pink and warm? Is there clear cyanosis, pallor, mottling? Obvious bleeding?

From the first moments on scene, we were able to observe that the pediatric patients were: conscious, crying loudly (therefore with a patent airway and adequate breathing), generally unhappy but not acutely distressed, without obvious bleeding or other trauma, and with normal skin signs. That’s plenty for the initial triage — a more full assessment will come later, but it’s unlikely that we’ll uncover any true life threats.

How about mom? We initially notice no obvious issues except for an altered mental status, which may be masking other problems (such as pain or neurological deficits). We also don’t know the cause of the AMS. Is there alcohol involved? Probably: she directly endorsed this. Drugs? Perhaps: vehemently denying drug use is not uncommon in drug users, and there were purpura consistent with needle “track marks” on her arm. But even if present, neither of those precludes a concomitant traumatic head injury; drunk and high people can bump their head too. And we were reminded of the first rule of EMS: everybody is diabetic. Although the circumstances didn’t necessarily suggest hypoglycemia as the most likely cause, it fit the presentation, and all drunk patients are somewhat at risk for this complication. If she’d stayed in our care, glucometry would have been wise during transport.

Is spinal immobilization needed? Local protocol comes into play. The children are probably low risk. The mechanism as a whole is potentially risky, due to the possibility of side-on energy transfer and head injury, but generally is not too alarming and the assessment findings are fairly reassuring. In the case of the mother, she is the classic example of a poor reporter who cannot reliably describe neck or back pain or participate in a neurological exam; most selective immobilization protocols (such as NEXUS or the Canadian C-spine rule) would advise immobilization in such cases. In this instance, due to equipment shortcomings, one child was immobilized via KED and the other two patients immobilized to long boards, with towel rolls used liberally. The children were liberated almost immediately after arrival at the ED, after a clinical exam by the pediatric emergency physician. The mother began fighting her board after she was roused with D50.

 

Transport and documentation

This case highlighted the need for intelligent patient assessment to guide transport destinations. Although low-acuity pediatric patients can sometimes be assessed in an adult ED, it depends on the receiving physician’s level of comfort, so in many cases they’ll prefer to transfer them to a specialty center (and any time a patient has to be transferred from where we brought them, we’ve failed them somewhat).

In a similar vein, acute patients needing surgical intervention should always be delivered to trauma centers. Does mom need a trauma center? Since we’re unable to rule out a traumatic cause for her mental status, it’s probably wise, although perhaps not essential. Do the kids need a pediatric trauma center? Probably not; they are, by all appearances, doing fine. Finally, although we could transport parent and kids to different hospitals, it would be distressing to everyone and create logistical headaches (involving consent, billing, and other concerns), so Bullitt Medical Center (an adult trauma center as well as a pediatric ED, although not a pediatric trauma center) is a sensible destination. (Since it’s a larger hospital, it’s also more capable of sustaining the “hit” of receiving three patients simultaneously than a small community ED.) Since the mother is a more challenging patient, it makes sense for the paramedics to take her while our BLS unit acts as a bus for the kids.

As for documentation, depending on state law we may be required to report all instances of child abuse to protective agencies. (In this particular region, reporting is mandated for any child or elder abuse.) If so, local procedures should be followed; although the hospital will most likely perform such reporting as well, in many states this does not absolve EMS of its own responsibilities.

When documenting the call, be aware that charges may be pursued against the mother for neglect, driving under the influence, or other offenses. These may hinge upon your documented findings, such as altered mental status, lack of appropriate child restraints, or statements about substance use. Depending on local laws for mandated reporters, you may be required to report these findings directly to police, or you may actually be prohibited from doing so by HIPAA laws; in either case, however, they should be noted in your report.

Live from Prospect St: The Big Crunch (part 2)

Continued from Part 1

Since the two children appear generally intact, you ask your partner to evaluate them more fully while you head for the sedan to find the driver. Anticipating three transports, two stable and one potentially critical, you ask your dispatch to continue the P12, and also to ensure that police are en route (they are).

Arriving at the sedan, you find a middle-aged woman in the driver’s seat, alert. She is pink and warm, perhaps more diaphoretic than you’d expect for the ambient temperature, and does not initially notice as you kneel beside her. A firefighter is holding C-spine immobilization from the back seat.

When you greet her and pat her on the shoulder, she gives no response, but with more vigorous stimulation she looks over and acknowledges you distractedly. With multiple attempts and some yelling, you’re able to get answers to a few questions, but she is slow, tangential, and often ignores you outright. She gives her name as Samantha, but cannot or will not provide her last name; she is unable to describe the events that led to the collision; and she gives no medical history or current medications. She does state several times that she’s fine and would like to leave. When asked about her passengers, she mumbles “my kids” and mentions her brother several times. She endorses pain when asked explicitly, but does not specify where. She agrees that she drank “a little” alcohol; when asked about any drug use, she denies it vehemently.

Physically, she appears generally unremarkable. She is breathing somewhat shallowly but effectively, and her radial pulse is around 100 and slightly weak. Her seatbelt is not in place, but it’s unclear whether it was removed at some point. No gross trauma is apparent upon her head, face, or neck, and she does not complain or grimace upon palpation. She is uncooperative with a neurological exam, but demonstrates spontaneous movement of all four extremities. Her pupils are equal and seem appropriately small on this moderately bright day. Chest rise is generally equal and her abdomen is supple; no bruising consistent with seatbelt injury is visible. Her left knee is abraded and somewhat swollen. A sprinkling of dark blotches and streaks are noted on her left ventral arm in the antecubital region. Both frontal airbags are deployed; the windshield is cracked, but lacks a “starred” point of impact; and the plastic dashboard in the driver’s knee area is damaged and cracked. No blood or other damage is visible in the interior compartment. There are no child seats.

Your partner comes over. “The kids seem fine, just upset. One’s complaining of some abdominal pain, but it looks okay. They’re little troopers. Fire says they were wearing regular lap belts with the shoulder strap tucked behind them.”

When you wonder aloud whether there are more patients, he says, “There was nobody else in the car when fire arrived. The truck driver gave a statement to the police about how she was swerving across the road and plowed into him, but then he eloped.” He looks over your shoulder. “Oh, and the P12 is pulling up now.”

 

What is your treatment plan for these three patients? What are their respective priorities, any points of concern, and how could you shed additional light on their status?

Who will transport which patient, and to which destinations?

What special considerations should be made during documentation?

 

The conclusion is here

Live from Prospect St: The Big Crunch (part 1)

It’s 4:00 PM on a gloomy Friday in Chandlerville, and you’re the technician for the A2, a dual-EMT, transporting BLS unit dedicated to the city. Chandlerville is a small town, but densely populated, and its numerous industrial districts are frequent sources of work. 911 dispatch is directly through the fire department, which also sends a BLS fire apparatus to assist on all medical calls; your company’s ALS is also available by request. You are equipped with finger-stick glucometry, glucose, aspirin, and epinephrine.

After a “man down” call that ended in a patient refusal, you’re now returning to quarters. Just as you’re beginning to back into the garage, a tone sounds.

Engine 3 and Ambulance 2, respond to 2108 Coastal Rd, the Empire Shipping Company, for an MVA. That’s two-one-oh-eight Coastal Road, in front of Empire Shipping, for an MVA. Engine 3?

“Engine 3 is responding.”

Ambulance 2?

As your partner flips on the lights and pulls out to the street, he speaks into the radio: “Ambulance 2 has 2108 Coastal Rd.”

Time out 16:01.

Coastal Road is a long connector that wraps around the edge of town, and you glance at the map book to confirm that the 2000 block will be near the very end, about as far away as you can get in Chandlerville. Engine 3 is stationed in that district, however, so they arrive within minutes.

“Engine 3 to Firecom.”

Firecom answering.

“We’re off at 2108 Coastal Road. Two-car MVA, car versus truck. Multiple injured parties and entrapment. Start an ALS unit and a ladder for extrication.”

Engine 3, you have a car versus truck, multiple injuries with entrapment. Break. Ladder 3, respond to 2108 Coastal Rd for the MVA; Engine 3 is on scene and A2 is responding. Time out 16:04.

A few seconds later, your company radio dispatches Paramedic 12 to the same address, after Chandlerville Firecom contacts them via landline. The P12 starts responding, but they’re coming from two towns away, with an ETA of 10+ minutes. The field supervisor also starts rolling from an unknown location to assist. 30 seconds later, Engine 3 updates that they have an injured adult and several children.

Now very awake, you reflect that the nearest hospital will be Chandlerville Memorial, a 3–5 minute emergent transport (10 minutes otherwise). The nearest large tertiary center, Bullitt Medical Center — a Level I adult trauma center and a designated pediatric ED — is 15 minutes emergently (25 otherwise). The nearest Level I pediatric trauma center, however, is the Children’s Hospital, which is also 15 minutes but in the opposite direction; they do not receive adult patients.

Ladder 3 arrives on scene momentarily, and you pull up a few minutes later. As you park and call yourself out, you observe a Ford sedan with its front left corner smashed in, two feet of its fender and frame crumpled. This is evidently the result of driving almost headlong into the side of an 18-wheeler. It appears that the driver swerved right to avoid the truck, undercutting its rear wheels and “submarining” itself; the damage reaches the passenger compartment, but there does not appear to be significant intrusion. The truck itself seems minimally damaged.

As you jump out, a firefighter waves you down. “We’ve got three!” he announces. “Mom’s in the driver’s seat; she seems really loopy, probably drunk. Her door is just dented, we popped it open. But her kids are over there.”

Twenty feet away, you see two young girls, around 4 years old, each in the arms of a firefighter. They are crying loudly and clearly upset, with no visible injuries. The mother is hidden from sight in the sedan. The driver of the truck is nowhere to be seen.

 

What are your initial steps for addressing this scene?

Who appears to be the first priority for care?

What resources will you need? Which, if any, should you cancel?

 

Continued in part 2 and the conclusion

Mastering BLS Ventilation: Algorithms

Continued from Mastering BLS Ventilation: Introduction, then Mastering BLS Ventilation: Hardware, then Mastering BLS Ventilation: Core Techniques, and finally Mastering BLS Ventilation: Supplemental Methods

Over the past few weeks, we’ve explored a large number of BLS tools for maintaining a patent airway and pushing oxygen through it. This is good, because the only reliable way to address this dilemma is by having a large toolbox. Nobody can oxygenate every patient with just one trick, no matter how skilled they are.

But a box of tools isn’t an approach to the airway, no matter how big it is. It’s just a box. You need more than that — you need a plan. If I toss you an apneic person, what are you going to do? What if that fails? What’s plan B? And plan C? Then what happens?

The only way to answer these questions is by creating your own scheme, a roadmap to fall back upon. I can’t give it to you, because I don’t know your variables. I don’t know your specific skillsets, what you’re comfortable with, what you’ve practiced and in what situations, versus what you’ve never done in your life. I don’t know what your local protocols are, and what equipment you have available (including extra toys like supraglottic airways or Narcan/naloxone), your typical transport times, or the general availability of ALS. I don’t know what type of patients you usually encounter, how many personnel you have on hand to manage them, and what sort of extrications are involved.

But you know those things. Roll it all into a ball so you understand your resources and challenges, consider the various tools we’ve discussed, and make a plan.

Click to expand

Click here for a PDF version (recommended if printing)

Here’s an example I concocted. This is a flowchart patterned after the airway algorithms commonly used in the ED or the ICU, and it incorporates most of the ideas we’ve talked about. It assumes certain things, so I’m not putting it forward as something to follow religiously. Rather, it’s meant as an example: this is the type of thinking you need to be doing. You probably won’t take the time to chart it out, but you should at least be thinking about it now, because figuring it out on scene with the sick person is too late. Mentally walk through what you’d do at each juncture, imagining yourself treating a real patient in your real ambulance using your real gear. Think about your responses to each dilemma, and if you discover you’re unsure about any details, seek out additional training or practice to patch those holes; for instance, spending some time with a (high quality) mannequin and a BVM can be beneficial. Even just a few minutes playing with the BVM (try bagging yourself until you really understand how the pressures and airflows work), the non-rebreather, your various airways, and so forth can help develop familiarity with little-used tools, so you truly understand how all the valves function, how to size and adjust everything, even where it can be found in your bags. This is particularly important if you rarely use these tools, because infrequent or not, you still need to exhibit mastery when the time comes.

Questions, comments, or remarks on our proposed model are welcome.

Thanks for sticking with us through this exploration of the art and science of BLS ventilation.