But it’s Just a Broken Nail!

One of the most common topics of debate in this business is something that should be simple. When is it okay for a patient to refuse transport to the hospital?

On the face of it this is a strange dilemma. When is it “okay”? What does that even mean? When is it okay to have Milano cookies and a bottle of Scotch for dinner? I don’t know. Leave me alone.

The chain of reasoning goes something like this. People call 911 because they have problems, and they don’t know how bad those problems are. By and large, we — the EMTs and paramedics on the ambulance — don’t know either. We don’t have the training or the tools to truly rule out major problems. So the only safe thing is to take the patient to the hospital. There, tall men with white coats, eight years of medical training, large expensive machines, and extensive liability insurance can decide if the patient is dying or not.

Okay. In some ways, that makes sense.

In other ways, it’s absurd. We all experience symptoms or incur injuries from time to time, and for the most part, we do not feel the need to visit the hospital to rule out deadly causes. Although it’s always a remote possibility that something is horribly wrong, in most cases it’s extremely unlikely, and it’s senseless to make an emergency out of every ache or sniffle. As we recently discussed, although it is possible to be very sick without looking like it, it is uncommon. If I woke up today with a minor headache, I wouldn’t want to spend hours of my time and hundreds of dollars at the emergency room “just in case.” So why does that suddenly become a reasonable course of action just because an EMS crew is standing in front of me?

There’s one good answer to this, which is that normally, I wouldn’t call 911 for a headache. So if there’s an ambulance here, it already means that for some reason, I had some special concern about this episode. Perhaps it was unusually bad, or prolonged, or I have medical history which makes me worried about what a headache might entail. Alternately, perhaps a friend or family member called on my behalf, but even then, presumably it’s because they had some reason to be worried.

This is all true. People who call for an ambulance are self-selected to be a higher-risk group than the general population. The headache patient who does dial 911 is more likely to be sick than the headache patient who doesn’t.

However, this isn’t always the case, and even when it is, it isn’t always significant. Some patients, or friends and family of patients, have a very low threshold for concern. Sometimes people misinterpret warning signs. Sometimes things just happen. Consider the hundreds of calls we take each year for minor MVCs. Someone dents their fender in traffic, a concerned passerby calls 911, and we show up to evaluate the occupants. There are no noteworthy injuries, and it wasn’t even the people involved who called for us. Is there a chance they have head bleeds, spinal fractures, pulmonary contusions? There’s always a chance. But do they need to go to the hospital? Or, put another way: they didn’t plan on going to the hospital before we arrived. We performed our medical assessment and found nothing alarming. Does the simple fact that we’re here mean there’s any better reason for them to go to the hospital than before we arrived?

Obviously, the answer is no. But we still tend to default to transporting them.

A cynic might suggest that this is because in most areas, ambulance providers can only bill for transports, not for refusals. In fairness, I don’t think this is usually the main reason.

A bigger reason is liability. There is a real concern on the part of providers, and on the part of the services employing us, that anytime we fail to transport a patient to definitive care, we might be “missing” something bad. As a result, they might later sue us for missing this. Would they have a case? Maybe, maybe not; it would depend on whether we followed the standard of care, and whether we implied to them that we “knew” they were okay with any greater certainty than we truly had. That’s the underlying issue, after all. It’s up to the patient whether they want to go, but we are medical professionals, with impressive uniforms and stethoscopes around our necks, and patients are therefore inclined to think that we know things they don’t. They’re inclined to do what we recommend. But even if we think they’re okay, we don’t know they’re okay, so our “recommendation” is usually to see the doctor, because that’s the only truly “safe” choice from our point of view.

Fair enough. But there’s a small problem with this. We’re lying.

Or at least deceiving. We are trained to assess patients, look for abnormalities, and identify findings that point to the possibility of injury or pathology. If we perform this task, and find nothing alarming or even suspicious, we are going to be thinking, “they’re probably okay. I’m not worried.” Why, then, do we turn to the patient and say, “You should really go to the hospital. I’m worried.”? One major national ambulance company has a policy that you should never ask, “Do you want to go to the hospital?” as it implies a choice — but instead, “Which hospital do you want to go to?” Railroading at its finest.

Certainly, it would be just as misleading to tell a patient, “You’re definitely okay.” We don’t know that, because as we already agreed, we lack the training and resources to diagnose anything for sure. But we do have enough tools to make medical decisions, which we do all the time — what’s the best transport destination? which medication is indicated? — and here, too, we can make an analysis of the risk factors. It’s not the same analysis that would be made by a team of doctors with a hospital at their backs, but as long as we don’t pretend that it is, that shouldn’t be a problem.

Think of it this way. If you were in the patient’s situation, would you want to go to the hospital?

Bear in mind that this isn’t a small thing. Depending on your circumstances, this may involve missing work (even losing a job), arrangements needing to be made for babysitting, housesitting, or pet care, cars retrieved, plans cancelled, and oh yes — a bill ranging from a few dollars to many thousands. Can’t pay that? Now your credit is on the line. You can also look forward to hours of sitting on a series of stretchers, wheelchairs, and beds, while busy people wearing scrubs stick sharp things into your flesh, capture your bodily excreta in plastic cups, and ask you an endless series of the same questions over and over and over. You will miss sleep, get behind on projects or errands, and in the end you will have to find a way to get yourself home and clean up from all this chaos. Possibly with a new infection that you picked up in the waiting room.

If we are responsible, we should view transportation to the hospital as a medical intervention in the same category as medications, invasive procedures, and diagnostic tests. It has certain indications and benefits, but also certain risks and harms associated with it, and we should consider both sides in balance before making a recommendation on the best choice. Certainly, that decision will have to be made by the patient, not by us, because it’s the patient who is undergoing these risks and benefits, so it’s they who get to decide how to weigh them. But they also don’t have the medical understanding of the situation that we do. So that’s our job: to transmit to them what we’ve found in our assessment of their complaint. The risk factors, the positive or negative findings on their physical, any alarming vital signs, and the salient features of their history. In many cases, this process is why they called us — because although they’re experiencing something abnormal, they don’t know if they should be worried or not. We won’t have all the answers, but we can give them more information than they had before, and they can use that information to better inform their decision on whether to seek further care. (Remember, this might include scheduling an appointment with their PCP, visiting an urgent care clinic, getting a ride to the ED or driving themselves, and of course the old “wait-and-see” approach. Even when more care is needed, the ambulance isn’t the only answer.)

For the reasons of liability, and policy, and the general fear-mongering attitude that has swept over the healthcare industry in recent years, this is a very difficult line to walk, and in many cases to preserve your job and license you may need to err on the side of “encouraging” a patient to be transported. However, I find it ethically troubling when we mindlessly push everyone towards the ED, no matter what common sense or their medical situation tell us. When we visit someone with a complaint that we’d ignore in ourselves, our partner, or our mother, and convince them to climb into the ambulance anyway, whose best interest are we looking out for?

Are we hurting the patient to help ourselves?

Are we okay with that?

The Art of the Transfer (part 3)

Continued from part 2

There’s another benefit of patient transfers beyond the merely educational. You get to meet the people.

Oh, you meet people on emergencies. Depending on the nature. Dead people don’t talk much. (You get a look at their houses, maybe.) And really sick people, well, you’re pretty focused on the medical stuff then. Patch this, pump that, push the magic potion. When did it start? Have you felt this way before? What Russ Reina calls the business of being a “flesh mechanic.”

But on a routine transfer, and to a lesser extent on the non-emergent “emergencies” (when you have little to do and no hurry to do it), you get to actually chat with the human being upon your stretcher. Imagine that! They don’t just have a name and date of birth — they have a trade, a family, a history, a life.

Everyone has a story. Some of them are more interesting than others on the surface, such as the retired spy or the film star, but everyone has a story, and they’re all worth hearing, if you care.

Most of these people are old. If you’re not old, you may think this means they have less to say to you, but really, it’s the opposite. You’re 25 and they’re 90; all of the problems you’ve got, all the changes in the world you think are new, every dilemma you’ve ever faced, they’ve seen it and heard it and done it. They’ve been alive for several of you. Do you think people live that long without knowing their way around?

I once heard it suggested that you don’t really grow any wiser as you age, because although you learn from your mistakes, there are still an infinite number of future mistakes to be made. You never “run out” of new errors.

Perhaps that’s true. But even if the 90-year-old benefits little from his wisdom, that doesn’t mean you can’t borrow some of it. And even if his experiences or decisions differ from yours, they were just as important to him as yours are to you, and you can bet the stories are worth hearing.

Where else can you meet such a range of people? And not just meet, but find yourself forced into spending one-on-one time with them? If you’re a misanthrope, this is not a good career for you. Multiple times a day you’ll be placed in a small box with a stranger for a period lasting minutes to hours. It’s like speed dating.

But if you like people — enjoy meeting them, appreciate their company, take pleasure in their lives — then there’s no better job to have.

The Art of the Transfer (part 2)

Continued from part 1

One of the best types of transfer for educating yourself is a discharge from a hospital, or in some cases from a nursing home or rehab.

It doesn’t matter where they’re going; what matters is where they’re coming from. Because your patient’s leaving a prolonged stay in skilled medical care, they should come with a whole bevy of paperwork and documentation chronicling their course of care. And you get to read it!

He presented to the ED with X symptoms. Was worked up with Y tests, and awarded Z diagnosis. Was admitted for A, B, and C treatments, and is now being discharged in Q condition.

Now if you ever get a patient with X symptoms, you have a great idea of what’s going to happen to them at the ED; you’ll know the leading diagnostic possibilities in their differential; and you can guess the types of treatment they’re going to receive. Did you learn this stuff in EMT class? I sure didn’t; for many of us, once the patient hits the door of the hospital, they’re no longer of interest. But that’s not how it works — you’re part of a sequence of care, not a one-act play, and if you don’t understand what happens later, you can’t make effective decisions now. Even something as simple as explaining to the patient what’s going to happen once they arrive at the ED is impossible if you don’t have a clue yourself. “We walk in the door… and then magic happens!”

Moreover, once you enter that patient’s room, you get to assess and communicate with that very same patient you just read about in the chart. You can say, “Ah, so this is what that disease process looks like”; you get to feel the pulse fixed at 60 by a pacemaker, listen to the lungs filled with fluid in the CHFer, and examine the scar made by a recent craniectomy. This is like getting the answer to a quiz, then learning the question. In the future, if you hear those crackling breath sounds, you’ll know what they mean, because you’ve heard the same thing in patients whose diagnosis you already knew. Remember, in the field we often never learn the answers; we make best-guesses and presumptive diagnoses, but unless we’re able to follow up later on their eventual diagnosis, we may never know if we were right. The discharge is your chance to get in at the other end of the process and put it all together.

You also get to organize your mental categories of disease. Coming out of class, you’ve learned a litany of human ailment that runs from A to Z; and whatever order you learned it in is probably the order you remember it in, except for some important, life-threatening illnesses that received special attention. But in real life, facing a real patient, the diagnosis probably isn’t the first one in the textbook, and it’s probably not the most deadly zebra; it’s probably the most common disease, because that’s what common means. Transporting a hundred patients helps you understand what’s common. You do need to remember that shortness of breath can be caused by a pulmonary embolism, but you’re coming from the wrong direction if it’s the first thing on your mind when you meet a gasping patient, because it’s just not as likely as other possibilities. Discharging a few dozen people with COPD will help rearrange this for you.

How about meds? People come out of the hospital on lots of them. Diligently reading those charts will help you learn which ones are used for which diseases, and if you make an effort, you can start to memorize their names and connect generic with trade names. And you’ll read Coumadin and then meet the elderly lady with bruises all over, complaining about how she gets cold so easily. Connecting the dots, connecting the dots.

If you’re enterprising, you can practice analyzing EKGs, interpreting labs, and reading imaging reports. It’s all in there, and it’s all part of the patient’s medical care. And no matter how distant something might be from your own scope of practice, as long is it involves the same human beings you’re treating and transporting for the same problems, then more knowledge will make you a better EMT.

More on transfers in part 3

The Art of the Transfer (part 1)

One of the problems with EMS today is that it involves a bait-and-switch.

From the outside, it’s not widely understood what the work involves. There’s a vague idea about flashing lights and saving lives, but that’s about all the public knows. So, enterprising young men and women take the class, get the training, find a job, and quickly discover that EMS from day to day isn’t quite what they had in mind.

Nowhere is this more apparent than for the EMT-B. For him, in many areas, most or all of the available work involves not emergency 911 response, but non-emergent patient transfers. Patients travel from home to hemodialysis centers, from nursing homes to doctor’s offices, or from hospitals to rehab facilities. Sometimes these are patients who need oxygen therapy or airway management; sometimes they are medically unstable and need close monitoring (although these patients often travel by ALS); but most often, they’re simply people who can’t easily stand or walk. If due to age or disability you’re unable to climb into a car or shuttle, and can’t safely transfer yourself to and from a wheelchair or sit in it, then you need to travel from place to place in a bed — and ambulances are the only traveling “bedmobiles” out there. Well, ambulances and hearses.

Routine transfers can get old. Real old. Maybe you’re looking for excitement. Maybe you’re looking to make a difference. Maybe you just want to use your skills or activate some neurons. Whatever the case, it’s easy to feel like bringing an endless parade of old people to their eye appointments is neither “emergency” nor “medical” even if it is a service.

Nevertheless, for many of us it’s an unavoidable part of our day. So it’s worth making the most of it.


A Classroom in the Ambulance

Transfers might be boring. But boring’s a good way to start out. There’s no better way to learn how to be an EMT.

My first job in this business was in a system doing 911 coverage almost exclusively. This seemed like a great opportunity, especially in an area (Northern California) where EMTs in the private sector were rarely able to work emergencies.

In retrospect, though, it was the wrong way to start. I walked in the door with absolutely no idea of how to do this job, and was immediately thrown into the field with no learning curve. I was expected to assist the medic, drive the ambulance, check the equipment, manage communications, and of course handle any BLS care. This was fresh out of EMT class, where I had no idea how to do any of that, and most of what I did know is not what was needed. And guess what? Every call was an emergency. Admittedly most “emergencies” are not exactly world-ending, but there were still stakes involved, which meant that being useless was bad for the patient, bad for my medic, and bad for me — because with the pressure on, it was difficult to relax and make the necessary “learning mistakes.”

My next job was in a service where almost 100% of our work was routine transfers. Although this could be mind-numbing, I quickly realized how much of a better learning environment it was. Because in nearly every case, the patient in front of me was not having any acute problem, my assessment could be a total blind-man’s fumble and there wouldn’t be any adverse results. That’s not to say that you’ll never be in a position to take action — but it’s rare.

On a 911 response, you’re the patient’s initial point of entry for the health care system. Before today, there was no problem, at least not from this particular episode. Now there’s something new that needs to be addressed, and you’re deciding how that will happen. The answer might be easy, but it’s still being made.

On a transfer, the patient’s course of care has already been planned and initiated. Their problems are diagnosed, their treatments are underway. Your responsibility isn’t to set anything into motion, but merely to ensure that there’s no deviation from the intended path. This requires learning the patient’s current baseline — which may be very sick — so you can note any new changes, and learning what their current plan is (perhaps a discharge back to their home, which will require a stair-chair carry to get inside), so you can facilitate it as best you can.

Take some vitals. Check pupils, feel skin, listen to breath sounds. Listen to their story. You’re doing these things as a matter of course, because you’re supposed to, in the midst of friendly chit-chat — but you’re also practicing all of your foundational skills. In the off chance of anything unusual, you’ll hopefully find it. But in the mean time, you’re turning yourself into a good EMT, so in the future when you do start running emergencies, you’ll be ready. Do more than you need to, because the time to figure out the tricks of taking a thigh blood pressure is when it doesn’t matter, not when it does.

To quote the biblical if crass House of God,

Look, Roy, these gomers have a terrific talent: they teach us medicine. You and I are going down there and, with my help, Anna O. is going to teach you more useful medical procedures in one hour than you could learn from a fragile young patient in a week. . . . You learn on the gomers, so that when some young person comes into the House of God dying . . . you know what to do, you do good, and you save them. (76)

Tune in next time for more on the fine, fine art of squeezing juicy goodness out of each transfer you get.

Live from Prospect St: Dizzy at Hillcrest (part 3)

Continued from Part 2

My apologies for the delay on this update: there have been major computer troubles here at EMSB HQ. We’re back in action now with the final piece of our scenario.

Ultimately, this patient was rapidly packaged and transported emergently to the nearer facility for immediate imaging to rule out intracranial hemorrhage. Her final diagnosis and disposition are not known.

This case demonstrates the ambiguity we’re often faced with in the field, where we may encounter findings in our assessment that are suggestive of Badness, but not definitively so. Particularly when faced with a patient whose complaints are minor or who generally presents well, it can be difficult to make the call to upgrade these patients to a higher level of care. Nobody wants to be the Boy Who Cried Wolf. However, our job is to get people to the most appropriate care, and although we should try to minimize overtriage, within reason, safe is better than sorry. The situation can be particularly difficult when we are dispatched as a low priority to an unremarkable complaint; changing gears from a low- to a high-severity mode takes more balls than merely continuing what’s already been set in motion.


Assessment: The Pink Flags

The suggestive if not outright alarming findings (I like to call them “pink flags” — not quite red, but close) with Ms. Smith were the following:

  • A recent fall, reportedly with a blow to the head and loss of consciousness.
  • A subsequent (apparently new) complaint of dysnomia (the inability to express oneself in words, a form of aphasia), which suggests some sort of neurological or metabolic insult.
  • A subsequent and sudden onset of vomiting with no other apparent explanation. This could be a sign of hemorrhagic stroke, although more minor head injuries can also induce vomiting.
  • A history of Coumadin (warfarin) use — a “blood thinner” or anticoagulant — which is a risk factor for intracranial bleeding.
  • A complaint of “head pressure,” which remotely suggests headache, typical in head bleeds.
  • A reported positive finding on a neurological test (failed finger-to-nose), which potentially supports a neurological event.
  • A complaint of dizziness, which is suggestive of either a balance-type (inner ear) pathology or a neurological one.
  • A finding of hypertension, which may or may not be elevated above the patient’s baseline.

On the other hand, the following findings point generally away from the likelihood of a stroke or intracranial bleed:

  • An alert and oriented patient mentating at her cognitive baseline.
  • A normal Cincinatti Stroke Scale, which assesses for arm drift, facial droop, and speech slurring.
  • A lack of other “focal” neurological deficits (an abnormality that is localized to a single sensory or motor region, such as a droop in one half of the face, or loss of sensation in the left arm but not the right). She has equal peripheral CSM, no complaints of partial vision loss, and so forth.
  • A lack of any significant headache. Although there is a vague complaint of pressure, which could be explained by the actual trauma to the head, headache associated with intracranial hemorrhage is typically severe and sudden.
  • Equal and non-dilated pupils. (Although they do present as small, this is an unremarkable finding in the elderly, as is poor reactivity — constricted pupils can’t constrict much more.) Furthermore, the eyes track well towards all sectors; gaze paralysis is suggestive of brain damage. None of this is highly predictive, however.
  • A lack of rigidity of the neck, which would support a hemorrhage.

Taken together, this cloud of positive and negative findings produces our clinical picture. We are not so fortunate that any one finding is diagnostic, or highly suggestive to either rule in or rule out Badness. Rather, we have a constellation of weak findings.


Differential: Strokes and Bleeds

It can be important to make a distinction between intracranial hemorrhage and stroke. Intracranial hemorrhage (we’ll call it ICH, not to be confused with “intracerebral hemorrhage,” discussed below — both abbreviations are seen in the literature) describes bleeding anywhere inside the dome of the skull, typically from a ruptured vein or artery. Sometimes, this occurs inside the skull but outside the brain, between the various membranes that lay between brain and skull: epidural (outside the dura), subdural (inside the dura), and subarachnoid (inside the arachnoid) are the main types and locations.

Bleeding deep within the tissue of the brain itself is also possible, and is a subcategory of ICH called intracerebral hemorrhage.

A stroke is a localized injury to brain tissue resulting in permanent neurological deficits. By far, the most common cause is known confusingly as ischemic stroke, and describes an event where a clot or other obstruction blocks an artery that feeds a portion of the brain. (This is the same mechanism that damages the heart in a myocardial infarction.) The other main cause of stroke is hemorrhagic, when an artery bleeds openly into the brain, causing damage both from the loss of perfusion to downstream tissue, as well as from the pressure caused by the growing pocket of blood. This is where stroke and head bleeds intersect: when either an intracerebral or subarachnoid hemorrhage is sufficient to cause local neurological damage and permanent loss of functional brain tissue, a stroke results. Epidural and subdural bleeds do not cause stroke per se, although they can still result in acute neurological symptoms due to the increase in intracranial pressure.

Although the effects of stroke are similar with either ischemic or hemorrhagic etiologies, hemorrhagic strokes may additionally produce the telltale signs of rising intracranial pressure, such as headache, vomiting, general (non-focal) neurological deficits, and in the late stages, Cushing’s triad (bradycardia, irregular respirations, and hypertension).


Applying the Differential

Ms. Smith’s history is certainly suggestive for a bleed. Head trauma is the most common cause of ICH, and with her Coumadin use, she should probably be worked up regardless of her minimal complaints. Her additional neurological complaints make this a potential “uh oh,” advising transport to a facility that can provide immediate care. However, there are some notable negatives that tamper this enthusiasm.

For one thing, it would be unusual for a bleed of this type to present so inconspicuously. If severe, we would expect to see a profoundly altered mental status, up to and including outright coma, and probably a significant headache. If there is also the localized infarct of a stroke, we would expect focal neurological complaints — local damage should cause focal deficits. The reason that the Cincinatti Stroke Scale uses facial droop and arm drift to screen for stroke is because the majority of strokes will be revealed by unilateral deficits. Ms. Smith has none of this.

If there is indeed a stroke, the type most consistent with her presentation is probably a cerebellar stroke affecting the vestibular (balance) system. This region is responsible for coordinating motor and sensory signals, allowing synchronized behavior, such as the finger-to-nose test she failed. It’s also responsible for proprioception and balance; hence, damage could produce her complaint of dizziness. It is always important to distinguish “dizziness” (a sensation of spinning, consistent with either vestibular stroke or BPPV) with “lightheadedness” (a dimming of the vision, as seen in orthostatic hypotension). This is a notable possibility mainly because cerebellar injuries often do not produce the focal deficits characteristic of other strokes.

If you are very enterprising, Dr. Scott Weingart describes a three-test screen (introduced by Dr. David Newman-Toker and Dr. Jorge Kattah here) which can help catch vestibular stroke in borderline cases such as these. It uses two simple and easy tests, plus a third — involving a head twist — which is more difficult to assess and vaguely terrifying to perform. If you plan to use any of them, it’s the sort of thing you should be practicing beforehand. (I personally find the head twist finicky and liability-prone in most circumstances.) Like all such tests, their role in the field should only be to help determine transport destination and priority, and give you additional information on how hard to push a reluctant patient towards transport. It is not appropriate for enterprising Dr. Medics to use as ammunition to say, “oh, it’s negative, you’re clearly fine.” The weight of a thousand lawyers will descend upon you, and rightly so, the day you decide that you have the power to rule out major sickness from your ambulance.

If an extra-cerebral hemorrhage proved to be the culprit, a subdural bleed is probably the most plausible, due to the relatively slow and insidious development of the symptoms.

Additional tests that were not performed, but might have been useful, include a visual field test (testing at minimum eyesight in both visual hemispheres), a “stick out your tongue” test (looking for deviation to either side), and a more complete test of reasoning and recall (portions of the Folstein Mini-Mental, for instance).

Many of the major components of the peripheral neurological exam we performed are taken from this excellent lecture by Dr. Gene Hern of AMR Contra Costa County (see 37:20 through 40:50), and is my favorite expansion on the typical “squeeze my hands.” Sharp sensation can be tested with the tip of a pen — or you can use Dr. Hern’s pinching method.

Two other tips: when performing the facial droop test, “show me your teeth” produces better results than “smile” — patients tend to give a larger, more symmetrical smile using more muscles. And when testing for arm drift, remember that the patient’s eyes should be shut, and the hands should be facing upward (supinated); this is a more difficult test and therefore more sensitive.


Treatment and Transport

The key points on our differential therefore come down to two: intracranial hemorrhage vs. anything else. “Anything else” could be any number of things that produce diffuse and global symptoms, including metabolic problems or even a brain tumor. Diabetic etiologies are always be a possibility, although glucometry was fortunately available to rule that out. In general, the old standby AEIOUTIPS is the sort of thing we’re looking at here. And remember, multiple concomitant pathologies are just as likely as one all-encompassing Badness, if not more so. As a starting point, we should bear in mind that around two-thirds of falls with loss of consciousness in the elderly will end in death. The risk is high.

As always, the differential only matters to the extent that it will affect our decisions. What will our field treatment be?

Certainly oxygen. Although hypoxia is unlikely to be significantly contributing to Ms. Smith’s complaints, it could be playing a role. Depending on local protocol, low-flow through a nasal cannula may be plenty.

In the case of stroke, there is some evidence that hyperoxygenation with high-flow O2 can contribute to worse outcomes. The 2010 Emergency Cardiovascular Care guidelines from the American Heart Association recommends titrating oxygen therapy to maintain an oxygen saturation of at least 94%, but not necessarily slapping on a non-rebreather at 15LPM. Depending on whether oximetry is available to you, and depending on your local policies and attitudes, this may or may not fly; it’s something to ask your boss and medical director.

What about C-spine immobilization? As always, this will be a matter of opinion and protocol. In some areas, any fall from standing height, with a blow to the head — especially for an elderly patient — must always be immobilized. However, clinically I would not consider it indicated here. Whatever criteria or standards you adhere to for selective immobilization, Ms. Smith likely meets them: she has had no peripheral neurological deficits (weakness, tingling, numbness, pain), no neck or back pain or tenderness, no factors that would impair her reporting of the above (such as distracting injuries or altered mental status), turns her head freely, and although not ambulatory on our arrival was obviously ambulatory for several hours prior. Remember that the only reason for the immobilization of blunt head trauma patients is the suspicion that any injury substantial enough to cause ICH may also be substantial enough to cause a cervical spine fracture — and while a valid reason for suspicion, this is just one factor to consider. (Conversely, if we had found focal neurological deficits, we would have likely been unable to determine whether it was secondary to the suspected ICH, or secondary to a spinal injury — immobilization would have been unavoidable.)

Close monitoring will be warranted, especially if we do suspect a bleed. Although Ms. Smith appears currently stable, there is a real possibility of her mental status deteriorating; epidural bleeds in particular are famous for a “lucid interval” following the initial trauma, after which the patient suddenly and catastrophically decompensates. Control of the airway and ventilatory support should be provided as necessary. If there are signs of herniation syndrome — an acute rise in intracranial pressure, resulting in “coning,” or the brain being forced through the openings in the skull — it may be reasonable to hyperventilate the patient slightly, at a rate of 1 breath every 3 seconds. Although the drop in systemic CO2 caused by a higher ventilatory rate results in a systemic respiratory alkalosis (high PH), which tends to reduce inflammation and hence lower intracranial pressure, it also reduces cerebral perfusion; it is therefore no longer recommended as a routine practice. Intracranial pressure is a challenging problem that produces a physiological tightrope that we need to delicately walk; hyperventilation is a last-ditch flailing that’s only advisable when things can’t get much worse.

Is an ALS intercept appropriate? Again, this may depend on your protocols. As Ms. Smith currently presents, there is no benefit to ALS care; whether or not she’s hemorrhaging, that’s a matter for the hospital, not the field. However, if should deteriorate, then ALS could prove very valuable in the management of her airway, seizures, cardiac arrhythmias, and other complications. With Ms. Smith’s currently excellent clinical picture, and the short transport to definitive care, I would not attempt to meet the paramedics unless I tripped over them in the driveway. However, the opposing argument can easily be made, and I wouldn’t call it wrong.

The most appropriate destination for this patient will likely be the nearest primary stroke center. A “primary” stroke center is required to have various resources available 24/7, the most important in our case being a CT scanner. The definitive determination of the presence or absence of our possible bleed will be via some form of CT, or possibly by MRI (if available).

Treatment may or may not involve surgical intervention, depending on location and severity. Many of these cases are managed conservatively, both because the benefits of surgery are often small and the harm (especially in deep brain bleeds) often large. As a result, my personal inclination is to steer towards the nearest facility that can provide immediate imaging; if surgical intervention beyond their capabilities is found to be indicated, transfer can be arranged. I would not advise transporting to the more distant requested facility; the only notable benefit other than the patient’s convenience and comfort (which we won’t diminish) is that her medical records and following physicians may be available there, and her history doesn’t seem complex enough for this to matter significantly.

In some areas, a few hospitals are designated as “comprehensive” stroke centers, a step above primary. These facilities are specialty centers with the most advanced stroke management capabilities, which may include diagnostic and interventional methods that would be appropriate to us. The system of comprehensive centers is still inchoate and only available in some states; check if yours is one of them.

Your local hospitals may follow a prehospital protocol that allows for a “stroke activation,” similar in principle to trauma or cath lab activations, where appropriate resources are mobilized by request of EMS and waiting upon your arrival. Depending on the local indications (for instance, your hospitals may demand a positive Cincinatti Stroke Scale), Ms. Smith might qualify.



In the end, I was unable to obtain patient follow-up on Ms. Smith. She received low-flow O2, was not C-spine immobilized, and was diverted to the nearer stroke center with an emergent transport and no ALS. An entry notification was made with an advisory of her status, although no formal stroke alert was given. She was stable throughout.

It’s important to note that our assessment of Ms. Smith, our analysis of her differential, and our resulting treatment and transport decisions, are not actually dependent on her eventual diagnosis. It doesn’t matter whether we ended up being “right” — hence, it doesn’t matter that we never found out the “answer,” even though I do love a good puzzle and I admit that I wanted to know. As long as we made an appropriate interpretation of our assessment findings, and made appropriate decisions based on them, then we got it right. Perhaps her complaints turned out to result from an alien egg incubating in her chest; that wouldn’t make us wrong, it would only mean that she was an aberration. Our business in the field is to play the odds in a responsible way, weighing risk-vs-benefit to provide our patient with the best chance of a good outcome.

That’s all. And that’s plenty.