The Art of the Transfer (part 2)

Continued from part 1

One of the best types of transfer for educating yourself is a discharge from a hospital, or in some cases from a nursing home or rehab.

It doesn’t matter where they’re going; what matters is where they’re coming from. Because your patient’s leaving a prolonged stay in skilled medical care, they should come with a whole bevy of paperwork and documentation chronicling their course of care. And you get to read it!

He presented to the ED with X symptoms. Was worked up with Y tests, and awarded Z diagnosis. Was admitted for A, B, and C treatments, and is now being discharged in Q condition.

Now if you ever get a patient with X symptoms, you have a great idea of what’s going to happen to them at the ED; you’ll know the leading diagnostic possibilities in their differential; and you can guess the types of treatment they’re going to receive. Did you learn this stuff in EMT class? I sure didn’t; for many of us, once the patient hits the door of the hospital, they’re no longer of interest. But that’s not how it works — you’re part of a sequence of care, not a one-act play, and if you don’t understand what happens later, you can’t make effective decisions now. Even something as simple as explaining to the patient what’s going to happen once they arrive at the ED is impossible if you don’t have a clue yourself. “We walk in the door… and then magic happens!”

Moreover, once you enter that patient’s room, you get to assess and communicate with that very same patient you just read about in the chart. You can say, “Ah, so this is what that disease process looks like”; you get to feel the pulse fixed at 60 by a pacemaker, listen to the lungs filled with fluid in the CHFer, and examine the scar made by a recent craniectomy. This is like getting the answer to a quiz, then learning the question. In the future, if you hear those crackling breath sounds, you’ll know what they mean, because you’ve heard the same thing in patients whose diagnosis you already knew. Remember, in the field we often never learn the answers; we make best-guesses and presumptive diagnoses, but unless we’re able to follow up later on their eventual diagnosis, we may never know if we were right. The discharge is your chance to get in at the other end of the process and put it all together.

You also get to organize your mental categories of disease. Coming out of class, you’ve learned a litany of human ailment that runs from A to Z; and whatever order you learned it in is probably the order you remember it in, except for some important, life-threatening illnesses that received special attention. But in real life, facing a real patient, the diagnosis probably isn’t the first one in the textbook, and it’s probably not the most deadly zebra; it’s probably the most common disease, because that’s what common means. Transporting a hundred patients helps you understand what’s common. You do need to remember that shortness of breath can be caused by a pulmonary embolism, but you’re coming from the wrong direction if it’s the first thing on your mind when you meet a gasping patient, because it’s just not as likely as other possibilities. Discharging a few dozen people with COPD will help rearrange this for you.

How about meds? People come out of the hospital on lots of them. Diligently reading those charts will help you learn which ones are used for which diseases, and if you make an effort, you can start to memorize their names and connect generic with trade names. And you’ll read Coumadin and then meet the elderly lady with bruises all over, complaining about how she gets cold so easily. Connecting the dots, connecting the dots.

If you’re enterprising, you can practice analyzing EKGs, interpreting labs, and reading imaging reports. It’s all in there, and it’s all part of the patient’s medical care. And no matter how distant something might be from your own scope of practice, as long is it involves the same human beings you’re treating and transporting for the same problems, then more knowledge will make you a better EMT.

More on transfers in part 3

The Art of the Transfer (part 1)

One of the problems with EMS today is that it involves a bait-and-switch.

From the outside, it’s not widely understood what the work involves. There’s a vague idea about flashing lights and saving lives, but that’s about all the public knows. So, enterprising young men and women take the class, get the training, find a job, and quickly discover that EMS from day to day isn’t quite what they had in mind.

Nowhere is this more apparent than for the EMT-B. For him, in many areas, most or all of the available work involves not emergency 911 response, but non-emergent patient transfers. Patients travel from home to hemodialysis centers, from nursing homes to doctor’s offices, or from hospitals to rehab facilities. Sometimes these are patients who need oxygen therapy or airway management; sometimes they are medically unstable and need close monitoring (although these patients often travel by ALS); but most often, they’re simply people who can’t easily stand or walk. If due to age or disability you’re unable to climb into a car or shuttle, and can’t safely transfer yourself to and from a wheelchair or sit in it, then you need to travel from place to place in a bed — and ambulances are the only traveling “bedmobiles” out there. Well, ambulances and hearses.

Routine transfers can get old. Real old. Maybe you’re looking for excitement. Maybe you’re looking to make a difference. Maybe you just want to use your skills or activate some neurons. Whatever the case, it’s easy to feel like bringing an endless parade of old people to their eye appointments is neither “emergency” nor “medical” even if it is a service.

Nevertheless, for many of us it’s an unavoidable part of our day. So it’s worth making the most of it.

 

A Classroom in the Ambulance

Transfers might be boring. But boring’s a good way to start out. There’s no better way to learn how to be an EMT.

My first job in this business was in a system doing 911 coverage almost exclusively. This seemed like a great opportunity, especially in an area (Northern California) where EMTs in the private sector were rarely able to work emergencies.

In retrospect, though, it was the wrong way to start. I walked in the door with absolutely no idea of how to do this job, and was immediately thrown into the field with no learning curve. I was expected to assist the medic, drive the ambulance, check the equipment, manage communications, and of course handle any BLS care. This was fresh out of EMT class, where I had no idea how to do any of that, and most of what I did know is not what was needed. And guess what? Every call was an emergency. Admittedly most “emergencies” are not exactly world-ending, but there were still stakes involved, which meant that being useless was bad for the patient, bad for my medic, and bad for me — because with the pressure on, it was difficult to relax and make the necessary “learning mistakes.”

My next job was in a service where almost 100% of our work was routine transfers. Although this could be mind-numbing, I quickly realized how much of a better learning environment it was. Because in nearly every case, the patient in front of me was not having any acute problem, my assessment could be a total blind-man’s fumble and there wouldn’t be any adverse results. That’s not to say that you’ll never be in a position to take action — but it’s rare.

On a 911 response, you’re the patient’s initial point of entry for the health care system. Before today, there was no problem, at least not from this particular episode. Now there’s something new that needs to be addressed, and you’re deciding how that will happen. The answer might be easy, but it’s still being made.

On a transfer, the patient’s course of care has already been planned and initiated. Their problems are diagnosed, their treatments are underway. Your responsibility isn’t to set anything into motion, but merely to ensure that there’s no deviation from the intended path. This requires learning the patient’s current baseline — which may be very sick — so you can note any new changes, and learning what their current plan is (perhaps a discharge back to their home, which will require a stair-chair carry to get inside), so you can facilitate it as best you can.

Take some vitals. Check pupils, feel skin, listen to breath sounds. Listen to their story. You’re doing these things as a matter of course, because you’re supposed to, in the midst of friendly chit-chat — but you’re also practicing all of your foundational skills. In the off chance of anything unusual, you’ll hopefully find it. But in the mean time, you’re turning yourself into a good EMT, so in the future when you do start running emergencies, you’ll be ready. Do more than you need to, because the time to figure out the tricks of taking a thigh blood pressure is when it doesn’t matter, not when it does.

To quote the biblical if crass House of God,

Look, Roy, these gomers have a terrific talent: they teach us medicine. You and I are going down there and, with my help, Anna O. is going to teach you more useful medical procedures in one hour than you could learn from a fragile young patient in a week. . . . You learn on the gomers, so that when some young person comes into the House of God dying . . . you know what to do, you do good, and you save them. (76)

Tune in next time for more on the fine, fine art of squeezing juicy goodness out of each transfer you get.

The Rapid Initial Assessment: Look, Talk, Feel

The initial assessment (known to old-timers as the “primary survey,” but it’s all the same idea) is the first phase of patient contact. It’s the initial period where you aim your eyeballs at the human being you’re going to be caring for and uncover the most basic facts about them.

Nowadays it’s taught as a discrete series of steps, usually something like this:

  1. General impression
  2. Assess responsiveness: AVPU
  3. Assess life threats: ABCs
    1. Assess and manage airway
    2. Assess and support breathing
    3. Assess and support circulation
  4. Determine patient priority

All good stuff, and there’s a reason it’s taught this way. All of these steps are important, and in order to teach (and test) them, they have to be broken down and explicitly described.

But this can be a shame, because in reality, the initial assessment isn’t like a recipe for a cake — mix this, then add that, then stir, then bake. It’s a brief burst of information, compacted into a dense flash of simultaneous sight, sound, and touch, and it can always be completed within a few seconds. In many cases it will be near instantaneous. In some it might take up to ten seconds. But it should never take as long as you’d need to actually verbalize all the steps.

The initial assessment should be a tight, elegant performance, and it’s one of the EMT’s most important skills. In the field, patients don’t come with charts or reports; all we know is what we’re dispatched with, which is usually wrong. But 90% of what you need to know about the patient can be learned promptly in the initial assessment. This is how you orient yourself to the situation and discover immediate life threats; more information and a more detailed assessment will follow, and it may reveal important findings, but our most critical job is to discover and treat what’s killing them, and that happens in the initial assessment. If you never got past this step you’d still be doing all of the most important things for the sickest people.

Here’s the process I recommend. It condenses everything you need to know into three simple steps.

 

Step 1: Look

You walk up and encounter your patient. What do you see?

Is he standing? Then he’s certainly conscious and alert. Is he moving purposefully or talking? Same business. Is he lying on the ground unconscious? We’ll learn more in a moment.

If he’s talking, his airway is intact and likely secure. You can roughly assess his breathing in about two seconds. Is he gasping for breath? Is he apneic? Is he speaking in full sentences?

Look at his skin. Is it pink? Is it pale and sweaty? Is it cyanotic? Is there obvious major trauma, such as significant bleeding anywhere or a puncture wound to the chest?

 

Step 2: Talk

Greet the patient and introduce yourself. “Hi, I’m Brandon.”

On a 911 response, you then ask for the patient’s name. How does he respond? Does he fail to recognize your presence at all? Does he look at you, but say nothing? Does he respond with a moan? Does he respond with, “George,” but his wife shakes her head and tells you otherwise? Does he promptly tell you his name?

To hear your words and verbalize an appropriate response requires alertness, engagement, memory, eye movement, vocal activity, and more. It requires the use of his airway and respiratory system, and thus reveals much about their status. Is he gurgling as he breathes? Gasping? You’ve learned a great deal already.

If you’re transferring a patient from a facility, you will already know the patient’s name, and pretending otherwise may make them wonder if you’ve got the wrong room. Better to skip their name and ask instead how they’re feeling. This leads you right into their chief complaint and subjective wellness, which is another huge slice of information. Are they in pain? Nauseous? Dizzy?

 

Step 3: Touch

As you talk, grasp the patient’s arm. You might politely interject, “May I grab you?” as appropriate.

Feel his skin. Is it dry, moist, or wet? Is it warm, hot, cool, or cold?

Feel his radial pulse. Is it present or absent? Is it weak, strong, or bounding? Is it slow or rapid, regular or irregular? There’s no need to count; that can wait for a full, proper set of vitals, which will come after our initial assessment. We’re just looking for a quick snapshot here.

This single touch tells you all sorts of things about his circulatory status. A patient with warm skin and a strong, regular radial pulse almost certainly has adequate volume and no immediate systemic crises. And anyway, taking someone by the hand is comforting in a primal way.

Let’s watch a few examples of this process at work.

 

Dispatched: MVA

Upon your arrival, you see a sedan in the middle of the road, with minor damage to the front bumper and right quarter panel. Beside it, you see an adult male walking around, slightly obese but appearing generally well.

He is ambulating easily and has no obvious bleeding or deformities. He therefore has a patent airway, largely adequate breathing and circulation, and his general impression is good. You could stop here, but we won’t.

You approach him, saying with a smile, “Hi, I’m Brandon. What’s your name?” He replies, “Greg Rogers — some idiot tried to pull out in front of me.” His breathing appears unlabored. As you talk, you take him by the wrist, feeling warm, dry skin and a strong, regular, slightly rapid radial pulse.

He appears neurologically intact, with good memory and appropriate responses. His breathing is normal and his circulation appears fine, although he is obviously a little excited.

[Initial asessment complete. Total time: 1 second to learn everything important; 5 seconds from soup to nuts. He has no life threats and is a low transport priority.]

 

Dispatched: Welfare check

You walk in the room to find an elderly woman supine on the bed, curled in an awkward position and motionless.

You are already highly suspicious of a depressed level of consciousness. It is possible she is merely sleeping, but most people would not sleep in such a position.

Approaching, you lean over and call, “Ma’am! Can you hear me?!” You gently shake her shoulder while you do. There is no response.

She is not alert. This is the “are you napping?” test; if she were easily roused in the same way you’d wake up your roommate, we would call her alert, not “responsive to voice”. You don’t lose points just for being asleep.

You lean into her ear and call again, this time in a loud shout. There is no response.

She is unresponsive to verbal stimuli. A loud, intrusive sound elicited no reaction.

Rolling her over, you note the sound of snoring respirations. Her chest is rising and falling with good depth, but not very quickly. Her skin is slightly ashen. You give her brachial plexus a tight pinch, to which she flinches and withdraws slightly.

She is responsive to painful stimuli, but does not open her eyes. (If you later wanted to calculate her GCS, she would earn a 5.) Her airway needs managing, and an OPA would probably be appropriate. She should receive supplemental oxygen as well, and may require assistance with the BVM. Since she’s breathing, she presumably has a pulse.

With one hand, you palpate her carotid pulse, while you palpate her radial pulse with the other. Her pulses are regular and slightly slow. Her radial is strong, and her skin is warm and dry both at the neck and at the wrist.

She has adequate circulation, perhaps with a slight bradycardia due to hypoxia. Her volume is adequate.

[Initial assessment complete. Total time: 6 seconds. She will need airway and breathing support, then a rapid assessment and transport due to her diminished level of consciousness.

 

Dispatched: Discharge to skilled nursing

You walk into the hospital room to find your patient in bed, semi-Fowler’s. Her eyes are open and staring at the ceiling, but she makes no acknowledgement of your presence. She is breathing adequately and without labor. Her skin appears dry and slightly pale.

She appears conscious, has an airway, and is breathing. She presumably has a pulse. She appears unremarkable for an ill but stable elderly patient, perhaps with a baseline dementia.

You approach her, saying, “Ms. Smith!” She turns her head and makes eye contact. “I’m Brandon. How are you feeling?” She replies, “Hi…” After another couple attempts, the best response she gives is to call you “Aaron” and ask about the elephants.

She is alert and engaged with her surroundings, but poorly oriented and disconnected with reality.

While you talk, you ask if you can see her arm; she pulls it slightly out from the sheets. You take her wrist with one hand. Her skin is pale, dry, and slightly cool peripherally, with poor turgor. Her radial pulse is very weak and irregularly irregular.

She is able to follow commands, but physically weak. Her peripheral circulation is poor, likely secondary to both poor cardiac output (her irregular pulse is consistent with atrial fibrillation) and peripheral vascular disease.

[Initial assessment complete. Total time: 8 seconds. Her presentation is consistent with her documented history and she is likely ready for transport.]

You may notice in all this that we haven’t performed any interventions — not even a lowly nasal cannula. The initial assessment is usually taught in a “treat as you assess” fashion; if you check the airway and find it compromised, you should address it before moving on. But look how fast we moved through all this! Wouldn’t you rather bang out your initial assessment in a few seconds, then move on to your treatments having a full knowledge of the situation? If we check the airway, and go to the trouble of sizing and inserting an OPA, by the time we’re done we still have no idea about breathing or circulatory status — something that would have taken another second or two to assess at most.

Initial assessments are like a flash of lightning: you start with nothing, and with a sudden burst of light, you end up with a great deal. That flash won’t tell you the whole story, and you’ll always need to keep looking and keep digging. But with a smart and efficient initial assessment, you’ll set the stage and choose the course for everything else to come. All in under ten seconds.

Get Up, Stand Up: Orthostatics

Orthostatic vital signs. Nurses think they’re a pain in the neck. Some doctors think they’re of marginal usefulness. Many providers simply think they’re a dying breed.

Like many old-school physical exam techniques, though, they’re dying only because high-tech imaging and laboratory techniques have largely replaced their role. And I don’t know about you, but my ambulance doesn’t come equipped for an ultrasound or serum electrolytes. Diagnostically, EMS lives in the Olden Days — the days of the hands-on physical, the stethoscope, the palpation and percussion, the careful and detailed history. For us, orthostatics have been and still are a valuable tool in patient assessment.

How are they performed? Orthostatic vital signs are essentially multiple sets of vitals taken from the patient in different positions. (They’re also sometimes known as the tilt test or tilt table, which is indeed another way to perform them — if you have a big, pivoting table available. Postural vitals is yet another name.) They usually include blood pressure and pulse, and are taken in two to three positions — supine (flat on the back) and standing are the most common, but a sitting position is sometimes also included, or used instead of standing. This is useful when a patient is unable to safely stand, although it’s not quite as diagnostically sensitive.

Why would we do such a dance? The main badness that orthostatics reveal is hypovolemia. With a full tank of blood, what ordinarily happens when I stand up? Gravity draws some of my blood into the lower portion of my body (mostly these big ol’ legs). This reduces perfusion to the important organs upstairs, especially my brain, so my body instantly compensates by increasing my heartrate a bit and tightening up my vasculature. No problem. However, what if my circulating volume is low — whether due to bleeding, dehydration, or even a “relative” hypovolemia (in distributive shocks such as sepsis or anaphylaxis)? In that case, when my smaller volume of blood is pulled away by gravity, my body will have a harder time compensating. If it’s not fully able to, then my blood pressure will drop systemically.

“But,” you cry, “surely this is all just extra steps. Can’t I recognize hypovolemia from basic vital signs — no matter what position you’re in?”

Well, yes and no. If it’s severe enough, then it will be readily apparent even if I’m standing on my head. But we routinely take baseline vitals on patients who are at least somewhat horizontal, and this is the ideal position to allow the body to compensate for low volume. By “challenging” the system with the use of gravity, we reveal the compensated hypovolemias… rather than only seeing the severely decompensated shock patients, who we can easily diagnose from thirty paces anyway. Like a cardiac stress test, we see more by pushing the body until it starts to fail; that’s how you discover the cracks beneath the surface.

Do we run on patients with hypovolemia? Oh, yes. External bleeding is a gimme, but how about GI bleeds? Decreased oral fluid intake? Increased urination due to diuretics? How about the day after a frat party kegger? Any of this sound familiar? It would be foolish to take the time to do this when it won’t affect patient care — such as in the obviously shocked patient — but there are times when what it reveals can be important, such as in patients who initially appear well and are considering refusing transport.

Here’s the process I’d recommend for taking orthostatics:

  1. Start with your initial, baseline set of vitals. Whatever position your patient is found in, that’s fine. Deal with your initial assessment in the usual fashion.
  2. Once you’re starting to go down a diagnostic pathway that prominently includes hypovolemic conditions in the differential, start thinking about orthostatics. If your initial vitals were taken while seated, try lying the patient flat and taking another pulse and BP. If possible, wait a minute or so between posture change and obtaining vitals; this will allow their system to “settle out” and avoid capturing aberrant numbers while they reestablish equilibrium.
  3. Ask yourself: can the patient safely stand? Even in altered or poorly-ambulatory individuals, the answer might be “yes” with your assistance, up to and including a burly firefighter supporting them from behind with a bearhug. (Caution here is advised even in basically well patients, because significant orthostatic hypotension may result in a sudden loss of consciousness upon standing. You don’t want your “positive” finding to come from a downed patient with a fresh hip fracture.) If safe to do so, stand the patient and take another pulse and BP. Again, waiting at least a minute is ideal, but if that’s not possible, don’t fret too much.
  4. For totally non-ambulatory patients, substitute sitting upright for standing. Ideally, this should be in a chair (or off the side of the stretcher) where their legs can hang, rather than a Fowler’s position with legs straight ahead.
  5. For utterly immobile patients who can’t even sit upright, or if attempting orthostatics in the truck while already transporting, you’ll need to do your best to position them with the stretcher back itself. Fully supine will be your low position, full upright Fowler’s will be your high position, and a semi-Fowler’s middle ground can be included if desired.

On interpretation: healthy, euvolemic patients can exhibit small orthostatic changes, so hypovolemia is only appreciable from a significant drop in BP or increase in heart rate. From supine to standing, a drop in the systolic blood pressure of over 20 is usually considered abnormal, as is an increase in pulse of over 30. (Changes from supine to sitting, or sitting to standing, will obviously be smaller, and therefore harder to distinguish from ordinary physiological fluctuations.) A drop in diastolic pressure of over 10 is also considered aberrant. You can remember this as the “10–20–30” rule.

Try to remember what’s going on here. As the patient shifts upright, their available volume is decreasing, for which their body attempts to compensate — in part by increasing their heart rate. It’s a truism that younger, healthier, less medicated patients are more able to compensate than older and less well individuals. So for the same volume status, you would be more likely to see an increase in pulse from the younger patient, perhaps with no change in pressure; whereas the older patient might have less pulse differential but a greater drop in pressure. (On the whole, the pulse change tends to be a more sensitive indicator than pressure, since almost everyone is able to compensate somewhat for orthostatic effects. As always, if you look for the compensation rather than the decompensation — the patch, rather than the hole it’s covering — you’ll see more red flags and find them sooner.)

Are substantial orthostatic changes definitive proof of hypovolemia? No, nothing’s certain in this world. Another possible cause is autonomic dysregulation, which essentially means that the normal compensating mechanisms (namely baroreceptors that detect the drop in pressure and stimulate vasoconstriction, chronotropy, and inotropy) fail to function properly. You do have enough juice, but your body isn’t doing its job of keeping it evenly circulating. Vasovagal syncope is one common example of this; I’ve got it myself, in fact, and hence have a habit of passing out while squatting. This sort of thing is not related to volume status, although if you combine the two the effect can be synergistic. A good history can help distinguish them: ask the patient if they have a prior history of dizziness upon standing.

Finally, pulse and pressure are not the only changes you can assess. One of the best indicators of orthostatic hypotension is simply a subjective feeling of light-headedness reported by the patient. Although sudden light-headedness upon standing can have other causes (the other big possibility is benign paroxysmal positional vertigo — although strictly speaking, BPPV tends to cause “dizziness,” which is not the same as “lightheadedness”), hypovolemia is certainly one of the most likely. So stand ’em up when it’s safe and reasonable, ask how they feel, grab the vitals if you can, and maybe even take the opportunity to see how well they walk (a nice, broad neurological test — the total inability to ambulate in a normally ambulatory patient is a very ominous sign).

Orthostatics are usually recorded on documentation by drawing little stick figures of the appropriate postures. For those who find this goofy, or are documenting on computers without “stick figure” keys, a full written description will do.

The Rhythm Method


One two three — five six seven

What’s the missing number?

If you said four, congratulations. You have a basic human ability to recognize patterns — one of the best tools we have to separate us from the monkeys and sea-slugs.

One of the simplest types of pattern is a rhythm, and the simplest rhythm is a steady cadence. Ba-dump, ba-dump, ba-dump. Imagine a metronome or a drummer tapping out a fixed, continuous pace at an unchanging rhythm.

This is also one of the most basic and useful tricks you’ll ever use when taking vitals!

See, measuring vitals involves feeling, hearing, or observing a series of fairly subtle blips over a period of time. Unfortunately, interference is common in the field, and it’s a rare day when bumps in the road and bangs in the cabin don’t eat up at least one of those blips.

When taking a radial pulse, if over 15 seconds you count 18 beats, you have a pulse of 72; but if just a couple of those beats are lost due to your movement or the patient’s, suddenly it becomes 64, which is a substantial difference. This is no good; we want better reliability than that.

Rhythm is the answer. A pulse is typically a regular rhythm. So are respirations. So are the Korotkoff sounds of a blood pressure. In order to establish this rhythm, you only need to hear two consecutive beats, and appreciate exactly how far apart they are. If you can do this, then you can continue to mentally tap out that pace — hopefully, while continuing to feel, see, or hear the true beats, which will help you to maintain the right speed, but even if you miss some, you’ll still have your mental beat to count. Even if you miss most of them!

So you feel for the pulse, and you palpate the first couple beats. Then you hit a tortuous section of road that throws you around the cabin, and you’re unable to feel anything for several seconds. But you already had the rhythm in your head, so when you pick up the pulse again, you haven’t lost the count — and you’ll end up with an accurate number.

Now, in sick people these rhythms aren’t always regular. And if you observe that a pulse or respiratory cycle isn’t regular, then this system won’t be as effective — for instance, there’s not much point in trying to find the “beat” to an A-Fib pulse. But small irregularities or breaks in the rhythm are okay, as long as there’s still a regular cycle underlying it; for instance, occasional dropped (or extra) beats won’t change the basic rate.

Give it a try. If you got rhythm, vital signs will never give you trouble again.