The final part of a series on oximetry: start with Respiration and Hemoglobin and Pulse Oximetry: Basics
Pulse oximetry is not always available in EMS — depending on level of care, scope of practice in your area, and how your service chooses to equip you — but when it is, it’s a valuable tool in your diagnostic toolbox. Just like we discussed before, and just like any other piece of the patient assessment, using it properly requires understanding how it works and when it doesn’t.
Clinical context: When a sat is not a sat
Simply put, oximetry is the vital sign of oxygenation. It is the direct measurement of the oxygen in your bloodstream. It does not quite measure the oxygen that is actually available to your cells, but it gets close.
First, remember that actual oxygen delivery requires not just adequate hemoglobin saturation, but also enough total hemoglobin, moving around at an adequate rate. In hypovolemia, such as the shocky trauma patient, or in anemia, you might see a high SpO2 — which may be entirely accurate — but this doesn’t necessarily mean that the organs are not hypoxic. After all, you could have nothing but a single lonely hemoglobin floating around, and if it had four oxygen bound to it, you would technically have a sat of 100%. But that won’t keep anyone alive. Evaluating perfusion is a separate matter from evaluating oxygenation.
Second, remember our discussion of the oxyhemoglobin dissociation curve. The fact that you have oxygen bound to your hemoglobin doesn’t mean that it’s actually being delivered to your cells. That is, you can be hypoxic — inadequate cellular oxygenation of your organs — without being hypoxemic — inadequate oxygen present in the blood. Oximetry will only reveal hypoxemia.
Two of the strongest confounders here are cyanide and carbon monoxide (CO) poisoning. The main effect of cyanide is to impair the normal cellular aerobic cycle, preventing the utilization of oxygen; since it has no effect on your lungs or hemoglobin, the result is a normal saturation, yet profound hypoxia, since none of the bound oxygen can actually be used. Carbon monoxide, on the other hand, involves a twofer; it binds to hemoglobin in the place of oxygen, creating a monster called carboxyhemoglobin. CO has far more affinity for carboxyhemoglobin than oxygen does, so it’s hard to dislodge, and you therefore lose 1/4 of your available binding sites in the affected hemoglobin. But it doesn’t stop there. Carboxyhemoglobin also has a higher affinity for oxygen. This creates a leftward shift in the oxyhemoglobin dissociation curve — the oxygen that actually does bind finds itself “stuck,” and these well-saturated boats happily sail past increasingly hypoxic tissues without ever unloading their O2.
Consider the oximetric findings in these patients. The cyanide patient will have unimpaired blood oxygenation, so (unless he has already succumbed to respiratory failure due to the effects), a normal sat will be seen; however, hypoxia will be clinically apparent, particularly as ischemia of the heart and brain. Carbon monoxide, on the other hand, will reveal a normal or elevated (100%) sat which is partially accurate — some of that is true oxygen — and partially baloney, since CO looks the same to the oximeter as O2. But this is moot, because neither the bound CO nor the bound O2 is available to the cells. Oximeters do exist that can detect the presence of carboxyhemoglobin, known as CO-oximeters, but they are expensive and uncommon, and there is some question as to their accuracy. Your best helper here is in the patient history: both CO and cyanide are produced by fires, or any combustion in enclosed spaces (such as stoves or heaters), cyanide being released by the combustion of many plastics. You should be very wary of normal sats in any patient coming from a house fire or similar circumstances.
(Both cyanide and CO poisoning are known for causing bright red skin. In both cases oxygen is not being removed from hemoglobin, so arterial blood remains pink and well-saturated. Carboxyhemoglobin itself is also an unusually bright red. This skin, a late sign, is usually seen in dead or near-dead patients.)
Third, consider that although oximetry is an excellent measure of oxygenation, this is not the same as assessing respiratory status. It’s a little like measuring the blood pressure: although it’s a very important number, BP is an end product of numerous other compensatory mechanisms, and a normal pressure doesn’t mean that there aren’t challenges being placed on it — merely that they’re challenges you’re currently able to compensate for. Perhaps you’re satting 98%, but only by breathing 40 times a minute, and you’re fatiguing fast. Perhaps you’re satting 94%, but your airway is closing quickly and in a few minutes you won’t be breathing at all. These are clinical findings that may not be revealed in SpO2 until it’s too late.
Fourth: oximetry measures oxygenation, but not ventilation. When you breathe in, you inhale oxygen; when you breathe out, you exhale carbon dioxide. Although we use the term ventilation to describe the overall process of breathing, formally in the respiratory world it refers to the removal of carbon dioxide. Is oxygenation the more important of these two functions? Certainly; it will kill you much faster. But hypercapnia (high CO2) caused by inadequate ventilation is also a problem, and pulse oximetry does not measure it. (Capnography is the vital sign of ventilation, but that’s a topic for another day.) Now, insofar as oxygenation is primarily determined by respiratory adequacy (rate, volume, and quality of breathing), and respiration both oxygenates and ventilates, oximetry can be a good indirect measurement of ventilation; if you’re oxygenating well, you’re probably ventilating well too. This remains true if breathing is assisted via BVM, CPAP, or other device. But this is not true if supplemental oxygen is applied. Increasing the fraction of inspired oxygen (FiO2) improves oxygenation without affecting ventilation; on 100% oxygen I might be breathing 8 times a minute, oxygenating well, but ventilating inadequately.
Finally, it’s worth remembering that once you reach 100% saturation, PaO2 may no longer correlate directly with SpO2. If you reach 100% saturation at a PaO2 of 80, we could keep increasing the available oxygen until you hit a PaO2 of 500, but your sat will still read 100%. So without taking a blood gas, we don’t know whether that sat of 100% is incredibly robust, or is very close to desatting. (That’s not to say that a higher PaO2 is necessarily better; recent research continues to suggest that hyperoxygenation is harmful in many conditions. Not knowing the true PaO2 can be problematic in either direction.)
Hardware failure: When a sat is not anything
In what clinical circumstances does oximetry tend to fail? The primary one is when there isn’t sufficient arterial flow to produce a strong signal. This can be systemic, such as hypovolemia — or cardiac arrest — or it can be local, such as in PVD. (The shocked patient has both problems, being both hypovolemic and peripherally vasoconstricted.) Feel the extremity you’re applying the sensor to; if it’s warm, your chances of an accurate reading are good. The best confirmation here is to watch the waveform; a clear, accurate waveform is a very good indicator that you have a strong signal.
Tremors from shivering, Parkinsonism, or fever-induced rigors can also produce artifact on the oximeter. Some patients also just don’t like the probe on their finger. Try holding it in place, keeping the sensor tightly against the skin and the digit motionless. If there’s no luck, try another site. Any finger will work, or any toe, or an earlobe. (Some devices don’t require “sandwiching” the tissue, and can be stuck to the forehead or other proximal site, but these are uncommon in outpatient settings.)
There are a few other situations that can interfere with normal readings. In most cases, nail polish is not a problem, but dark colors do decrease the transmittance, so some shades have been reported to produce falsely low readings in the presence of already low sats or poor perfusion — as always, check your waveform for adequate signal strength. Very bright fluorescent lights have been reported to create strange numbers, and ambient infrared light — such as the heat lamps found in neonatal isolettes — can certainly create spurious readings. A few other medical oddities fall into this category as well, including intravenous dyes like methylene blue, and methemoglobinemia, which produces false sats trending towards 85%.
Is oximetry a replacement for a clinical assessment of respiration, including rate, rhythm, subjective difficulty, breath sounds, skin, and relevant history? Absolutely not. But since none of those actually provide a quantified assessment of oxygenation, they are also no replacement for oximetry. It is a valuable addition to any diagnostic suite, particularly to help in monitoring a patient over time, as well as for detecting depressed respirations before they become clinically obvious — especially in the clinically opaque patient, such as the comatose. When it’s unavailable in the field, we readily do without it. But when it’s available, it’s worth using, and anything worth using is worth understanding.
The pulse oximeter is “a tool in the diagnostic toolbox” a perfect analogy.As healthcare providers we need to do a full patient assessment before we treat the patient.Never make the mistake of treating just what you see on the monitor.
Thanks Brandon for a useful series of articles. I actually own a pulse oximeter, bought it on eBay to do my own sleep studies. This was useful stuff.
Thanks Ken! Sleep apnea troubles?
“Finally, it’s worth remembering that once you reach 100% saturation, PaO2 may no longer correlate directly with SpO2. If you reach 100% saturation at a PaO2 of 80, we could keep increasing the available oxygen until you hit a PaO2 of 500, but your sat will still read 100%. ”
I sometimes wonder if this fact is forgotten in EMS. So many times we have to remind ourselves to slow down with BVM respirations or that not every patient should be on supplemental oxygen. We know too much oxygen is bad but it seems it is still hard to convince the misguided.
This was a thorough review of pulse oximetry and its proper use in the field. I appreciate how you address the subject from nearly every angle I can think of. I feel I could share this with almost anyone and they would get a lot out of it. Nice work Brandon!
Useless article, you only dedicated one sentence to methemoglobinemia.
Just kidding, this is a great series and addresses just the kind of topics that prehospital providers should be taught and understand, rather than the cursory mention it is usually given. I believe in my basic class we discussed pulse ox for about two minutes, just to inform us that the value should be over 95% (maybe lower if they have COPD, but they’re gonna get high flow O2 anyway so…) and that fingernail polish will invariably screw up our readings and must be removed…
One useful application that I think you failed to mention however is actually utilizing the “pulse” part of pulse oximetry. I can’t tell you how many times I’ve been taking care of a critical patient and there is confusion or disagreement over whether there is a pulse and we should be starting compressions. Since the pulse oximeter is invariably already in place, it’s so easy to glance at the monitor and see if there is a nice waveform. If it’s there, problem solved, there’s a pulse. Being a very specific tool that is not very sensitive in this scenario, obviously it won’t give a final answer if there is no waveform visible, but in my experience it stands to be very useful in critical situations.
Of course there are scores of people out there who may misinterpret what I’m saying and claim that promoting such things will delay CPR or that we don’t need a machine to tell us something our physical assessment skills should be capable of discerning, but since you and I are incredibly like-minded, I think you’ll understand just what kind of use of suggesting.
Thanks Vince! I mentioned this in reference to finding peripheral pulses, but not for general confirmation of pulselessness; great point.
I suppose we could have a Zen argument, though, about whether a pulse that is not palpable is really a pulse at all. If there’s an electrical rhythm with a shallow but visible pleth waveform, but no readily palpable carotids, do we call it PEA? If a tree falls in the forest…